
1

ORION: A Distributed File System for Non-Volatile 
Main Memories and RDMA-Capable Networks

Jian Yang, Joseph Izraelevitz, Steven Swanson

Non-Volatile Systems Laboratory

Department of Computer Science & Engineering

University of California, San Diego



2

RDMA Network

• PCM, STT-RAM, ReRAM, Intel 3DXPoint

• Performant: DRAM-class latency/BW

• Byte-addressable

• Persistent over power failures

Non-Volatile Main Memory (NVMM)

Accessing NVMM as Remote Storage

Application

MemoryDRAM NVMM

Remote Direct Memory Access (RDMA)

• DMA from/to remote memory

• Two-sided verbs (Send/Recv)

• One-sided verbs (Read/Write)

• Bypasses remote CPU

• Byte-addressable

Application

DRAM NVMM

Application

DRAM NVMM

Application

DRAM NVMM



3

Accessing Local NVMM vs. Remote NVMM

19x
241x

19%
5%

Latency of write(4KB) + fsync()

NVMMFS

iSCSI/RDMA

Ceph/RDMA

NVMMFS

Ceph/RDMA

iSCSI/RDMA

Throughput of fileserver workload

6653MB/s

3.86 us

Distributed FS

Application

NVMM

Distributed FS

Access remote NVMM over Dist. FS

Application

NVMM

NVMM FS

Access local NVMM

RDMA

(NOVA)

(NOVA)

Better

Better



4

Issue #1: Existing Dist. FSs are Slow on NVMM

• Layered Design

• Indirection overhead

• Expensive to persist (e.g., fsync())

RPC
Storage ServerStorage Client

Application

File System

NVMM

File Access

File Access

Block Access

Kernel

User

File System/FUSE

File Request



5

NVMM is Faster than RDMA

RDMA Network NVMM

300 ns

2-16 GB/s

64 Byte (Cacheline)

3 μs

5 GB/s

2 KB (MTU)

Latency

Bandwidth

Access Size

Harddrive (NVMe)

70 μs

1.3-3.2 GB/s

4 KB (Page)
(@ Max BW)

Networking is faster than storage

>>

<



6

NVMM is Faster than RDMA

RDMA Network NVMM

300 ns

2-16 GB/s

64 Byte (Cacheline)

3 μs

5 GB/s

2 KB (MTU)

Latency

Bandwidth

Access Size

Harddrive (NVMe)

70 μs

1.3-3.2 GB/s

4 KB (Page)
(@ Max BW)

>>

<

NVMM is faster than networking



7

Issue #2: Lack of Support for Local NVMM

NVMM FS

Storage Server
Storage 
Client

Application

File System

Remote NVMMLocal NVMM

RDMA

Page Cache

• Use case of converged storage

– Local NVMM supports Direct Access (DAX)

• Existing systems do not store data at local

• Run Local FS and Dist. FS

– Expensive to move data DAX



8

ORION: A Distributed File System for
NVMM and RDMA-Capable Networks

• A clean slate design for NVMM and RDMA

• A unified layer: kernel FS + networking

• Pooled NVMM storage

• Accessing metadata/data directly over

Direct Access (DAX) and RDMA

• Designed for rack-scale scalability

ORION

Application Application

RDMA AccessDAX Access

POSIX I/O

NVMM NVMMPooled NVMM



9

Outline

• Background

• Design overview

• Metadata and data management

• Replication

• RDMA persistence

• Evaluation

• Conclusion



10

Data StoreData StoreData Store

Data

Client
Client

Client

MDS

Metadata

ORION: Cluster Overview

Sync/Update

DAX
Read/Write

RDMA Read/Write

• Metadata Server (MDS): Runs ORIONFS,

keeps authoritative metadata of the whole FS

• Client: Runs ORIONFS, keeps active metadata 

and cached data. Access local NVMM

• Data Store (DS): Pooled NVMM data

• Metadata Access: Clients <=> MDS (Two-sided)

• Data Access: Clients => DSs (One-sided)

NVMM

DRAM

NVMM

Metadata

Data $

Data



11

The ORION File System

• Inherited from NOVA [Xu, FAST 16]

– Per-inode metadata (operation) log

– Build in-DRAM data structures on recovery

– Atomic log append

• Metadata:

– DMA (Physical) memory region (MR)

– RDMA-able metadata structures

• Data: Globally partitioned

MDS MDS

Client

Data Store

a

b

c

VFS

inodes

dentries

b

c

VFS

inodes

dentries

Data $

inode log

inode log

DataData [X][Y]

[$]



12

Operations in ORION File System

• Open(a)
– Allocate inode

MDS

Client

a

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQClient

RPC: Open
Path: a
WAddr:&alloc



13

Operations in ORION File System

• Open(a)
– Allocate inode

– Issue an RPC via RDMA_Send

MDS

Client

a

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQClient

Client



14

Operations in ORION File System

• Open(a)
– Allocate inode

– Issue an RPC via RDMA_Send
– RDMA_Write to allocated space

MDS

Client

a

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a
MDS

Client

Client



15

Operations in ORION File System

• Open(a)
– Allocate inode

– Issue an RPC via RDMA_Send
– RDMA_Write to allocated space

– RDMA_Read the rest of the log

MDS

Client

a

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a
MDS

Client

Client

Client



16

a

Operations in ORION File System

• Write(c)
– Allocate & CoW to client-owned pages

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

Client



17

Operations in ORION File System

• Write(c)
– Allocate & CoW to client-owned pages

– Append log entry

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

a

Client

Client

Log: FileWrite
Addr=(X,addr)
Size=4096



18

Operations in ORION File System

• Write(c)
– Allocate & CoW to client-owned pages

– Append log entry

– Commit log entry via RDMA_Send

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

a

Client

Client

Client

Log: FileWrite
Addr=(X,addr)
Size=4096



19

Operations in ORION File System

• Write(c)
– Allocate & CoW to client-owned pages

– Append log entry

– Commit log entry via RDMA_Send
– Append log entry

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

a

Client

Client

Client

MDS

Log: FileWrite
Addr=(X,addr)
Size=4096



20

Operations in ORION File System

• Write(c)
– Allocate & CoW to client-owned pages

– Append log entry

– Commit log entry via RDMA_Send
– Append log entry

– Update tail pointers atomically

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

a
MDSClient

Client

Client

Client

MDS

Log: FileWrite
Addr=(X,addr)
Size=4096



21

Operations in ORION File System

• Tailcheck(b)
– Log commit from another client

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

MDS



22

Operations in ORION File System

• Tailcheck(b)
– Log commit from another client

– RDMA_Read remote log tail

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

MDS

Client



23

Operations in ORION File System

• Tailcheck(b)
– Log commit from another client

– RDMA_Read remote log tail

– Read from MDS if Len(Local) < Len(Remote)

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

MDS

Client

Client



24

3

Data

Operations in ORION File System

• Read(b)
– Tailcheck (async)

– RDMA_Read from data store

• Data locality

– Future reads will hit DRAM cache

– Future writes will go to local NVMM

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

Data Store

[Y]

Type=FileWrite
Addr=(Y,3)
Size=4096

Client

Client



25

Type=FileWrite
Addr=($,0)
Size=4096

3

Data

Operations in ORION File System

• Read(b)
– Tailcheck (async)

– RDMA_Read from data store

– In-place update to log entry

• Data locality

– Future reads will hit DRAM cache

– Future writes will go to local NVMM

MDS

Client

1

b

c

b

c

Data $

inode log

inode log

Data[X]

[$]

RecvQ

a

Data Store

[Y]

Client

Client

Client



26

15Mop/s

Accelerating Metadata Accesses

• Observations:

– RDMA prefers inbound operations [Su, EuroSys 17]

– RDMA prefers small operations [Kalia, ATC 16]

• MDS request handling:

– Tailcheck (8B RDMA_Read): MDS-bypass

– Log Commit (~128B RDMA_Send): Single-inode operations

– RPC (Varies): Other operations, less common

1.9Mop/s

3.3 us

One-sided RDMA

RDMA Send 

8 Bytes

512 Bytes

Read [Inbound]

Write[Outbound]

Latency

Throughtput

1.3 us



27

#1

#1 #3 #3#3

#1 #2

#3#2#1#1

#3#1

Optimizing Log Commits

• Speculative log commit:

– Return when RDMA_Send verb is signaled

– Tailcheck before send

– Rebuild inode from log when necessary

– RPCs for complex operations (e.g. 

O_APPEND)

• Log commit + Persist: ~ 500 CPU Cycles

C
lie

n
t 

1
M

D
S

C
lie

n
t 

2 inode log

RecvQ

inode log

inode log

MDS Tail

Local Tail

(memcpy) (flush+fence)

Rebuild



28

Evaluation

ORION Prototype

• ORION kernel modules (~15K LOC)

• Linux Kernel 4.10

• RDMA Stack: MLNX_OFED 4.3

• Bind to 1 core for each client

Networking

• 12 Nodes connected to a switch

• InfiniBand Switch (QLogic 12300)

Hardware

• 2x Intel Westmere-EP CPU

• 16GB DRAM as DRAM

• 32GB DRAM as NVMM

• RNIC: Mellanox ConnectX-2 VPI (40Gbps)



29

0

25

50

75

100

Create Mkdir Unlink Rmdir FIO 4K

Read

FIO 4K

Write

A
cc

es
s 

La
te

n
cy

 (u
s)

Orion vs. Distributed File Systems

Orion Ceph Gluster

Evaluation: File Operations

582/932 417

0

10

20

30

Create Mkdir Unlink Rmdir FIO 4K

Read

FIO 4K

Write

Orion vs. Local File Systems

Orion NOVA Ext4-DAX

Better Better

1.3x
162x

3x

1.3x



30

Evaluation: Applications

0

0.2

0.4

0.6

0.8

1

varmail fileserver webserver mongodb

Th
ro

u
gh

p
u

t 
(R

el
a

ti
ve

)

Filebench workloads and MongoDB (YCSB-A) throughput (relative to NOVA)

Orion NOVA Ext4-DAX Ceph Gluster
Better

68%

85%



31

Evaluation: Metadata Accesses

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Th
ro

u
gh

p
u

t 
 (R

el
a

ti
ve

 t
o

 1
 C

lie
n

t)

# Clients

Relative throughput of metadata operations

Tailcheck Log Commit RPC
0

5

10

15

8 Clients

Th
ro

u
gh

p
u

t 
(M

o
p

/
s)

Throughput of metadata operations

Tailcheck Log Commit RPCBetter



32

Conclusion

• Existing distributed file systems lack of NVMM support and have significant 

software overhead

• ORION unifies the NVMM file system and the networking layer

• ORION provides fast metadata accesses

• ORION allows DAX to local NVMM data

• Performance comparable to local NVMM file systems


