DistCache: Provable Load Balancing for Large-Scale
Storage Systems with Distributed Caching

Zaoxing (Alan) Liu

Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,

Vladimir Braverman, Xin Jin, lon Stoica

@

Carnegie
JONSHOPKINS Nielon W BAREFOSIT Berkeley

UNIVERSITY University NETWORKS

Large-scale cloud services need large storage clusters

= Major cloud services serve billions of users.

CGRHEl acy s

Large datacenter clusters 2

Storage servers have load imbalance issue

= Typical workloads
[Sigmetrics’12]:
= Highly skewed. — >
= Dynamic.

Server 'Oad—’l | . -

Query Popularity

11111111111

The skewness of the workload brings imbalance.

Solutions to mitigate the load imbalance

» Consistent hashing and related.
o Do not handle dynamic and skewed workloads.

= Data migration or replication.
o Large system and storage overhead.
o High cache coherence cost.

» Front-end cache as a load balancer.
= | ow update overhead.
= Work for arbitrary workloads.

Solutions to mitigate the load imbalance

» Consistent hashing and related.
o Do not handle dynamic and skewed workloads.

= Data migration or replication.
o Large system and storage overhead.
o High cache coherence cost.

= Front-end cache as a load balancer.
= | ow update overhead.
= Work for arbitrary workloads.

Prior work: Fast, small cache alleviates load imbalance

Cache hottest O(n log n) items [SoCC’11]

Server load

. Application to cluster-scale:
is balanced

[NSDI’16, SOSP’17]

N servers

A cache node brings load balancing in a cluster.

Strawman: Big, fast cache for inter-cluster load balancing

m
Clusters
of
n
Servers

One “Big” cache is infeasible

41 Thps

AN S
s \\--
Clusters i
of -
22 5 S O o s
ervers

One big cache is not scalable.

First, balance the load within each cluster

Cluster load =—> I

CIUSterS . = .

m
clusters

Second, balance the load between clusters

Cache hottest O(m log m) items.

We need to avoid using big node anywhere.

10

DistCache: Distributed caching as load balancer

Cache hottest O(m log m) items.

Upper-layer
cache nodes

Lower-layer
cache nodes

m
clusters

Provable, Practical, General mechanism.

11

Natural goals on a distributed caching mechanism

Ideally, DistCache should be as good as
“one big cache” to absorb O(m log m) hottest items.

Upper-layer

Lower-layer ‘

m clusters

o O
® O
= @&

12

Natural goals on a distributed caching mechanism

Ideally, DistCache should be as good as
“one big cache” to absorb O(m log m) hottest items.

To achieve “one big cache”:

o Support ANY query workload to hottest O(m log m) items.
o Each cache node is NOT overloaded.

o Keep cache coherence with MINIMAL cost.

Upper-layer ‘ ‘ ‘

Lower-layer ‘ ‘ ‘
N e EEEn B -

Design Challenges of DistCache

»= Challenge #1: How to allocate cached items?
= Do not overload any cache node.
= Do not incur high cache coherence cost.

» Challenge #2: How to query the cached items?
* Provide best and stable cache query distribution.

* Challenge #3: How to update the cached items?
= Two-phase update to ensure cache coherence.

14

Design Challenges of DistCache

»= Challenge #1: How to allocate cached items?
= Do not overload any cache node.
= Do not incur high cache coherence cost.

» Challenge #2: How to query the cached items?
* Provide best and stable cache query distribution.

* Challenge #3: How to update the cached items?
= Two-phase update to ensure cache coherence.

Challenge #1: How to allocate the cached items?

Strawman Sol #1: Cache-Replication

{A,B,C,D,E} {A,B,C,D,E} {A,B,C,D,E}

- — —
Update cache Update cache Update cache

Upper layer
cache nodes

{A, B, C} {D, E} {F}

Lower layer -
cache nodes Update cache

Cache-Replication incurs high cache coherence cost.

16

Challenge #1: How to allocate the cached items?

Strawman Sol #2: Cache-Partition

{A B, C} {D} {E}
Upper layer
cache nodes

Overload

{A B, C} {E} {D}
Lower layer
cache nodes

Overload

Cache-Partition could put too many hottest items into the same cache node.

17

Independent hashes to allocate the cached items

Two independent hashes H1 and H2 to allocate hot items

{B, E} {A} {C, D, F}
Upper layer -
cache nodes Update cache
{A, B, C} {D, E} {F}

Lower layer -
cache nodes Update cache

e Stable and best cache allocation.
e Small cache coherence cost.

18

Challenge #2: How to query the cached items?
Get(C) with upper layer first

{B, E} {A} — {C, D, F}
Upper layer
cache nodes .
{A, B, C} {D, E} {F}

Lower layer
cache nodes]

Querying item with upper layer first does not guarantee best throughput.

19

Power-of-two-choices to query the cached items
Get(C) with upper layer first

1B, E} 1A} — {C, D, F}
Upper layer
cache nodes .
1A, B, C} 1D, E} {F}

Lower layer
cache nodes]

Power-of-two-choices to route the queries guarantee stable throughput.

20

Putting together: DistCache
Get(B)

Upper layer
cache nodes

Lower layer
cache nodes

* Independent hashes to allocate cache items.
« Power-of-two-choices of current cache loads to route queries.

21

Theoretical Guarantee behind DistCache

For m storage clusters:
o DistCache absorbs any query workload to the
hottest O(m log m) items.

with the following condition:
o Query rate for a single item is no larger than 2 of one
cache node’s throughput. (No more half of a cluster!)

22

Proof Sketch: Convert to a perfect matching problem

Proofs leverage tools from
expander graph, network
flow, and querying theory

Upper layer

cache nodes

Hottest items =—»

Lower layer

Our PoT query can find a
query cache nodes

perfect match for any query
workload distribution.

23

Remarks of the DistCache Analysis

* The numbers of cache nodes in two layers can be
different as long as m isn’t too small.

* The throughput of cache nodes can be different.

= Aggregated throughput is almost same as “big cache”.

24

Example Deployment Scenarios of DistCache

O(10) MQPS each

@ O(1) BQPS each

DRAM/SSD Array Programmable Switch

+

! O(100) KQPS each

Flash / Disk

+

Servers

2 O(10) MQPS each

DRAM

25

Case Study: Switch-based distributed caching

3. If cache hit,
switch will reply

2. Client side switch
decides which cache

\:ode to access (PoT)

1. Client sends query

é Redis Storage Clusters Client Cluster

Programmable ‘@'

switches

Programmable .@'

switches

When cache hit, cache switch will reply the query immediately.

26

Case Study: Switch-based distributed caching

3. If cache miss, query
is forwarded to server

2. Client side switch
decides which cache

\:ode to access (PoT)

4. Server handles
the query to Redls
and replies.

1. Client sends query

e —

é Redis Storage Clusters Client Clusters

When cache miss, query is handled by the server. .,

Implementation Overview

Cache Network

ntroller
el Management Management

Cache
Switch

Servers

Key-Value Heavy Hitter Query
Cache Detector Routing

Client-side

Switch Clients

wr S p—
. Statistics .
28

P4: Programmable Protocol-Independent Packet Processing

User-defined

Packet Format: ETH IP TCP SEQ (0] KEY VALUE

Existing Packet Header Packet Header for Caching

Header/Metadata in Shared Memory

Match-Action Match-Action Match-Action
Table Table Table

Deparser

29

P4: Programmable Protocol-Independent Packet Processing

User-defined

Packet Format: ETH IP TCP SEQ oP KEY VALUE

Existing Packet Header Packet Header for Caching

Match: Match:
OP == GET KEY == A & Vaild Val of A is fetched

Action: Action: Action:
Get_Load ++ Get value of A Update to header

30

6.5 Tbps
Barefoot Tofino

6.5 Tbps
Barefoot Tofino

Two Physical
Servers

» Baselines: NoCache, Cache-Partition, Cache-Replication.

Evaluation Setup

@ eee o000 U

Emulated Upper-layer nodes

—

@.OQ ..O@

Emulated Lower-layer nodes

00 |

Emulated Client-side switches

Emulated Storage Servers

Emulated Client Servers

31

Evaluation Takeaways

» For read queries, DistCache works as good as Cache-Replication.

» For write queries, DistCache has performed significantly better:
= When write ratio (<0.3), better throughput.
= When write ratio (>0.3), as good as Cache-Partition.

32

DistCache balances the loads of different clusters

B DistCache B CachePartition
I CacheReplication [NoCache

RN
o
N
NN

912

o

Normalized Throughput

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

DistCache offers nearly perfect throughput for skewed workloads

33

DistCache scales linearly with the number of nodes

TN
o
(o)
(@))

| —@=— DistCache
—ll— CacheReplication
- CachePartition

2048 L + NoCache

i =
$ - $
0 1024 2048 3072 4096

Number of Storage Nodes

o

Normalized Throughput

DistCache can support very large storage clusters.

34

DistCache incurs small cache coherence cost

1024 -—@— DistCache

—li— CacheReplication
-pe= CachePartition
== NoCache

512

Normalized
Throughput

O |
0.0 0.2 0.4 0.6 0.8 1.0

Write Ratio

Under Zipf-0.99 workload, DistCache offers best write throughput.

35

Conclusions

» DistCache is a general distributed caching mechanism to
ensure load balancing crossing many storage clusters.

» DistCache requires simple primitives (independent hashing,
power-of-two-choices routing).

» DistCache provides near-perfect throughput with rigorous
theoretical guarantees.

