
OpenEC: Toward Unified and Configurable 
Erasure Coding Management in 

Distributed Storage Systems

Xiaolu Li1, Runhui Li1, Patrick P. C. Lee1, Yuchong Hu2

The Chinese University of Hong Kong1

Huazhong University of Science and Technology2

USENIX FAST 2019

1



Introduction

ØFault tolerance for distributed storage is critical 
• Availability: data remains accessible under failures
• Durability: no data loss even under failures

ØErasure coding is a promising redundancy technique 
• Minimum data redundancy via “data encoding” 
• Higher reliability with same storage redundancy than replication
• Reportedly deployed in Google, Azure, Facebook 

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding) 
à PBs saving

2



Erasure Coding
ØDivide file data to k data blocks
ØEncode k data blocks to n-k parity blocks
ØDistribute the n erasure-coded blocks (coding group) to n nodes 
ØFault-tolerance: any k out of n blocks can recover file data

3

Nodes

(n, k) = (4, 2)

File encodedivide
A
B
C
D

A+C
B+D
A+D

B+C+D

A
B
C
D

A+C
B+D
A+D

B+C+D

A
B
C
D



Erasure Coding

ØReed-Solomon (RS) codes are widely deployed
• Storage-optimal
• Generality for n and k
• Drawback: high repair penalty

ØNew erasure coding solutions
• Repair-optimal erasure codes

• e.g., regenerating codes [TIT’10]; locally repairable codes (LRCs) [ATC’12, PVLDB’13]; 
double regenerating codes (DRC) [TOS’17]

• Repair-efficient algorithms
• e.g., Partial-parallel-repair (PPR) [Eurosys’16]; Repair pipelining [ATC’17]

4



Challenge

ØDeploying new erasure coding solutions in distributed storage 
systems (DSSs) is a daunting task
• Re-engineering of DSS workflows (e.g., read/write paths)
• Hard to generalize for different DSSs

ØOur past experience: 
• Over 4K lines-of-code change to HDFS-RAID for adding DRC [TOS’17]

ØReview of six DSSs with erasure coding support
• HDFS-RAID, Hadoop 3.0 HDFS, QFS, Tahoe-LAFS, Ceph and Swift

5



Limitations of Current DSSs

ØHard to add advanced erasure codes
• Existing DSSs only provide interfaces for basic encoding/decoding operations
• Most DSSs do not support sub-packetization (e.g., regenerating codes)

ØHard to configure the workflows and placement of coding operations

6

Network

RN1 N2 N3 N4

Network

RN1 N2 N3 N4

Repair in fetch-and-compute manner Repair pipelining [ATC’17] cannot be readily realized

ü û



Our Contributions

ØPropose ECDAG, a directed-acyclic-graph abstraction for 
realizing general erasure coding solutions
• Decoupling erasure coding management from DSS workflows

ØPrototype OpenEC on HDFS-RAID, Hadoop 3 HDFS, and QFS
• Minimal code changes

ØExtensive experiments on local and Amazon EC2 clusters
7

OpenEC: a unified and configurable framework for 
erasure coding management



ECDAG
Ø (n, k) code

• Data blocks: b0, …, bk-1

• Parity blocks: bk, …, bn-1

• Virtual blocks: bi for i ≥ n

ØAn ECDAG is a directed acyclic graph that defines either an 
encoding or a decoding operation
• Vertex vi: block bi in a coding group
• Edge ei,j: block bi is an input to the linear combination of bj

• Each edge is associated with a coding coefficient

8



ECDAG

ØECDAGs for a (5,4) code:

9

Encoding

0 1 2 3

4
Decoding

1 2 3 4

0
Partial-parallel repair 
(PPR) [Mitra, EuroSys’16]

1 2 3 4

5 6

0



ECDAG

ØECDAGs for regenerating codes [Dimakis, TIT’10] with sub-packetization
• w: sub-packetization level (number of sub-blocks per block)
• e.g., n=4, k=2, w=2

10

Layout

0 2 4 6

1 3 5 7

b0 b1 b2 b3
Encoding

0 1 2 3

4 5 6 7
Decoding

63 4 52 7

8 9 10

0 1



ECDAG Primitives

Construction of an ECDAG:

Ø Join: describes linear combination

ØBindX: co-locates coding operations at same level (i.e., x-direction)

ØBindY: co-locates coding operations across levels (i.e., y-direction)

11



ECDAG Primitives

ØEncoding of (6,4) RS code

12

ECDAG* ecdag = new ECDAG();
ecdag->Join(4, {0,1,2,3}, {1,1,1,1});
ecdag->Join(5, {0,1,2,3}, {1,2,4,8});
int vidx = ecdag->BindX({4,5});
ecdag->BindY(vidx, 0);

0 1 2 3

4 5 BindX

0 1 2 3

4 5

6
BindY

0 1 2 3

4 5

6



ECDAG Primitives

ØDecoding via repair pipelining [Li, ATC’17]:
• e.g., recovering the missing block 0 for (6, 4) RS code

13

ECDAG* ecdag = new ECDAG();
ecdag->Join(7, {1,2}, {1,1});
ecdag->BindY(7, 2);
ecdag->Join(8, {7,3}, {1,1});
ecdag->BindY(8, 3);
ecdag->Join(9, {8,4}, {1,1});
ecdag->BindY(9, 4);
ecdag->Join(0, {9}, {1});

1 2

7

3

8

4

9 0



Erasure Coding Interfaces

class ECBase {
int n, k, w;
vector<int> ecoefs;

public:
// constructing encoding ECDAGs
ECDAG* Encode();

// constructing decoding ECDAGs
ECDAG* Decode(vector<int> from, vector<int> to);

// organizing blocks in groups (e.g., racks)
vector<vector<int>> Place();

}

14



OpenEC Design

15

ØController:
• Manages EC metadata
• Parses ECDAGs and 

assigns tasks to agents
• Controls block placement
• Coordinates repair 

ØAgent:
• Performs coding operations

ØOECClient:
• Interfaces between 

applications and storage

OpenEC deployment on HDFS



OpenEC Design

Basic operations:
ØWrites

• Online encoding
• Offline encoding

ØNormal reads

ØDegraded reads

ØFull-node recovery

16

Tasks:
Ø Load

• Loads an input block

ØFetch
• Retrieves blocks from other agents

ØCompute
• Computes a new block

ØPersist
• Returns a block



Parsing an ECDAG

ØOnline encoding for 
(6,4) RS code
• On the write path
• Performed by client C

Vertices Nodes Tasks
v0 C Load b0

v1 C Load b1

v2 C Load b2

v3 C Load b3

v6 C Compute b4 from {b0, b1, b2, b3} with 
coding coefficients {1,1,1,1};
Compute b5 from {b0, b1, b2, b3} with 
coding coefficients {1,2,4,8};

v4 C -
v5 C -
- C Persist b0; Persist b1; Persist b2;

Persist b3; Persist b4; Persist b5;
17

0 1 2 3

4 5

6



Parsing an ECDAG

18

ØOffline encoding for 
(6,4) RS code
• Blocks 0-3 are in 

nodes 0-3
• Performed by different 

nodes

Vertices Nodes Tasks
v0 N0 Load b0

v1 N1 Load b1

v2 N2 Load b2

v3 N3 Load b3

v6 N0 Fetch b1 from N1
Fetch b2 from N2
Fetch b3 from N3
Compute b4 from {b0, b1, b2, b3} with 
coding coefficients {1,1,1,1};
Compute b5 from {b0, b1, b2, b3} with 
coding coefficients {1,2,4,8};

v4 N4 Fetch b4 from N0; Persist b4

v5 N5 Fetch b5 from N0; Persist b5

0 1 2 3

4 5

6



Automated Optimizations

ØAutomated BindX and BindY
• Examines subgraph structures and calls BindX and BindY automatically

ØHierarchy awareness

19

Pipelining

1 2 3 4

0

5 6 1 23 45 6

7 8 9 10 11 0



OpenEC Implementation

ØMiddleware layer (7000+ lines-of-code)
• Coding operations in units of packets
• Intel ISA-L for erasure coding
• Redis for communications

Ø Integration with existing distributed storage systems
• HDFS-RAID
• Hadoop 3.0 HDFS
• QFS (see technical report)

ØEach integration only makes ≤ 450 lines-of-code changes
• Changes include: (1) interfacing with systems, (2) block placement

20



Experiments

Ø Local cluster
• 16 machines
• Quad-core 3.4 GHz Intel CPU
• 16 GiB RAM
• 10 Gb/s network

ØAmazon EC2
• Up to 30 instances
• m5.xlarge instances
• 10 Gb/s network

21



Basic Operations in Local Cluster

ØOpenEC preserves original HDFS performance

ØOpenEC achieves much faster offline encoding than HDFS-RAID 
with a simpler workflow

22

82
7.

5
84

4 11
85

.4
10

50
.4

11
32

.2
10

39

0

500

1000

1500

2000

Write Normal
Read

Degraded
Read

Th
pt

 (M
iB

/s
)

HDFS-3 OpenEC

14
84

.5

62
4.

9

30
8.

3

28
5.

6

0

500

1000

1500

2000

Offline
Encoding

Full-node
Recovery

Th
pt

 (M
iB

/s
)

HDFS-RAID
OpenEC

Comparisons with HDFS-3 Comparisons with HDFS-RAID



Comparisons with Native Coding (without I/O)

ØECDAG coding computations are slower than ISA-L 
• 29-38% lower in encoding; 0.6-3.15% lower in decoding

ØRemains much faster than I/O; limited overhead overall
23

51
76

.472
96

.5

36
59

.6
59

72
.1

27
46

.743
73

.1

26
17

.640
92

.2

0

2000

4000

6000

8000

(6,4) (9,6) (12,8)(14,10)

Th
pt

 (M
iB

/s
)

Native
OpenEC

27
51

28
40

.6

18
76

.6
19

13
.5

14
24

14
43

.9

10
85

.1
10

91
.6

0

1000

2000

3000

(6,4) (9,6) (12,8)(14,10)

Th
pt

 (M
iB

/s
)

Native
OpenEC

Encoding Decoding



Support of Erasure Coding Designs

24

36
.5

18
.4

21
6.

9

12
3.

9

0

50

100

150

200

250

1 Gbps 10 Gbps

Th
pt

 (M
iB

/s
)

RS (9, 6)
LRC(10, 6)

58
.4

39
.1

27
.4

20
1.

3
21

6.
9

16
0.

6

0

100

200

300

400

500

1 Gbps 10 Gbps

Th
pt

 (M
iB

/s
)

RS (6, 4)
Butterfly (6, 4)
MISER (8, 4)

10
1.

1
35

.4
18

.4

32
2.

7
20

0.
2

12
3.

9

0

100

200

300

400

500

1 Gbps 10 Gbps

Th
pt

 (M
iB

/s
)

RS (9, 6)
PPR (9, 6)
Pipeline (9, 6) 54

.7

36
.8

55
.6

27
.8

0

20

40

60

80

(6, 4) (9, 6)

Th
pt

 (M
iB

/s
)

RS DRC

LRC Regenerating 
codes

Repair 
algorithms

DRC

ØComparisons with six state-of-the-art erasure coding designs

ØOpenEC’s performance conforms to the theoretical gains in 
network-bound environments



Automated Optimizations

ØAutomated ECDAG 
customization for a 
hierarchical topology

ØUp to 82% repair throughput 
gain

25

10
0.

8
55

.1

96
.6

42
.3

74
.1

36
.7

0

40

80

120

(8,6) (10,8) (12,10)

Th
pt

 (M
iB

/s
)

Default
Pipeline



Scalability in Amazon EC2

ØOpenEC scales well with number of instances

26

32
21

.1
21

52
.1

97
6.

5

72
70

49
07

.2
25

38
.3

72
35

.4
50

78
.9

25
29

.8
0

2000

4000

6000

8000

Write Normal
Read

Degraded
Read

Th
pt

 (M
iB

/s
)

N=10
N=20
N=30

21
95

.5
18

25
.7

11
88

.9

54
1

42
5.

9
16

7.
2

0

500

1000

1500

2000

2500

O ine
Encoding

Full-node
Recovery

Th
pt

 (M
iB

/s
)

N=10
N=20
N=30

Online Encoding Offline Encoding



Conclusions

ØOpenEC is a unified and configurable framework for flexible 
erasure coding management

ØFuture work:
• Integration with more systems (e.g., Ceph, Swift)
• Combined with software-defined storage for better configurability

ØSource code:
• http://adslab.cse.cuhk.edu.hk/software/openec

27



Backup

28



Question

ØHow to construct decoding ECDAGs for different combinations of 
lost blocks? 

ØThe Decode() function should construct different decoding 
ECDAGs for two cases:
• Decoding one lost block: uses any repair-efficient approach
• Decoding multiple lost blocks: picks the first k available blocks

29



Question

ØWhat happens if there is a failure during repair?

ØWe assume that OpenEC restarts the repair process by 
connecting to the new set of available nodes. 

30



Question

ØWhat types of codes are supported or not supported?

ØSupported: 
• Linear codes (e.g., RS codes, regenerating codes, LRC)

ØNot supported:
• Non-linear codes
• Sector-disk codes

31



Question

ØPerformance of automated BindX and BindY?

32

29
0.

5
28

6.
8

17
9.

5 31
6.

7
29

8.
4

18
3

33
6

32
3.

6
18

7

0

200

400

600

(8,6) (10,8) (12,10)

Th
pt

 (M
iB

/s
)

No Optimization
BindX
BindX & BindY (default)



Question

ØPerformance in QFS

33

34
9.

9
34

6.
7 53

3.
2

51
5.

8

51
7.

9
49

2.
3

0

200

400

600

800

Write Normal
Read

Degraded
Read

Th
pt

 (M
iB

/s
)

QFS OpenEC

59
4.

2
60

0.
4

50
5.

6
51

0.
9

50
6

51
0

0

200

400

600

800

Write Normal
Read

Degraded
Read

Th
pt

 (M
iB

/s
)

QFS OpenEC

Single Client Multiple Clients


