OpenEC: Toward Unified and Configurable
Erasure Coding Management in
Distributed Storage Systems

Xiaolu Li', Runhui Li, Patrick P. C. Lee', Yuchong Hu?

The Chinese University of Hong Kong’
Huazhong University of Science and Technology?

USENIX FAST 2019

Introduction

» Fault tolerance for distributed storage is critical
 Availability: data remains accessible under failures
« Durability: no data loss even under failures

» Erasure coding is a promising redundancy technique
« Minimum data redundancy via “data encoding”
» Higher reliability with same storage redundancy than replication
« Reportedly deployed in Google, Azure, Facebook

* e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding)
- PBs saving

Erasure Coding

» Divide file data to k data blocks

» Encode k data blocks to n-k parity blocks

» Distribute the n erasure-coded blocks (coding group) to n nodes
» Fault-tolerance: any k out of n blocks can recover file data

Nodes
A A]
: o -
A g ________________ N g)
File divide B encode —_—
C A+C | . [_A+C
D B+D B+D
A+D | (. [A+D)
B+C+D B+C+D

(n, k) = (4, 2)

Erasure Coding

» Reed-Solomon (RS) codes are widely deployed
« Storage-optimal
* Generality for n and k
* Drawback: high repair penalty

» New erasure coding solutions

* Repair-optimal erasure codes

* e.g., regenerating codes [TIT’10]; locally repairable codes (LRCs) [ATC 12, PVLDB'13];
double regenerating codes (DRC) [TOS17]

« Repair-efficient algorithms
* e.g., Partial-parallel-repair (PPR) [Eurosys’16]; Repair pipelining [ATC17]

Challenge

» Deploying new erasure coding solutions in distributed storage
systems (DSSs) is a daunting task

* Re-engineering of DSS workflows (e.g., read/write paths)
« Hard to generalize for different DSSs

» Our past experience:
* Over 4K lines-of-code change to HDFS-RAID for adding DRC [ros'17]

» Review of six DSSs with erasure coding support
« HDFS-RAID, Hadoop 3.0 HDFS, QFS, Tahoe-LAFS, Ceph and Swift

Limitations of Current DSSs

» Hard to add advanced erasure codes
« Existing DSSs only provide interfaces for basic encoding/decoding operations
« Most DSSs do not support sub-packetization (e.g., regenerating codes)

» Hard to configure the workflows and placement of coding operations

Network Network

Repair in fetch-and-compute manner Repair pipelining [ATC'17] cannot be readily realized

Our Contributions

OpenEC: a unified and configurable framework for
erasure coding management

» Propose ECDAG, a directed-acyclic-graph abstraction for
realizing general erasure coding solutions

* Decoupling erasure coding management from DSS workflows

» Prototype OpenEC on HDFS-RAID, Hadoop 3 HDFS, and QFS

* Minimal code changes

» Extensive experiments on local and Amazon EC2 clusters

ECDAG

» (n, k) code
« Data blocks: by, ..., by 4
 Parity blocks: b, ..., b, 4
* Virtual blocks: b, fori=n

» An ECDAG is a directed acyclic graph that defines either an
encoding or a decoding operation
* Vertex v;: block b, in a coding group
* Edge ¢, block b; is an input to the linear combination of b,
« Each edge is associated with a coding coefficient

ECDAG

» ECDAGs for a (5,4) code:

» N

Encoding Dec°di"9 Partial-parallel repair
(PPRY) [mitra, Eurosys'16]

ECDAG

» ECDAGs for regenerating codes pimakis, T10] With sub-packetization
* W: sub-packetization level (number of sub-blocks per block)
* e.g., n=4, k=2, w=2

Layout Encoding Decoding

10

ECDAG Primitives

Construction of an ECDAG:
» Join: describes linear combination
» BindX: co-locates coding operations at same level (i.e., x-direction)

» BindY: co-locates coding operations across levels (i.e., y-direction)

11

ECDAG Primitives

» Encoding of (6,4) RS code

BindY

ECDAG* ecdag = new ECDAG();
ecdag->Join(4, {o,1,2,3}, {1,1,1,1});
ecdag->Join(5, {0,1,2,3}, {1,2,4,8});
int vidx = ecdag->BindX({4,5});
ecdag->BindY(vidx, 0);

12

ECDAG Primitives

» Decoding via repair pipelining i, atc17:
* e.g., recovering the missing block 0 for (6, 4) RS code

ECDAG* ecdag = new ECDAG();
ecdag->Join(7, {1,2}, {1,1});
ecdag->BindY (7, 2);
ecdag->Join(8, {7,3}, {1,1});
ecdag->BindY (8, 3);
ecdag->Join(9, {8,4}, {1,1});
ecdag->BindY (9, 4);
ecdag->Join(0, {9}, {1});

13

Erasure Coding Interfaces

class ECBase {
int n, k, w;
vector<int> ecoefs;
public:
// constructing encoding ECDAGs
ECDAG* Encode();

// constructing decoding ECDAGs
ECDAG* Decode(vector<int> from, vector<int> to);

// organizing blocks in groups (e.g., racks)
vector<vector<int>> Place();

14

OpenEC Design

» Controller:

Applications
+ Manages EC metadata) e —" R U
OECCli OECCli OECCli
+ Parses ECDAGs and [controtter | (22 ek =) control flow
: y y y
aSSIQnS taSkS tO agents Agent L Agent | -1 Agent data flow
* Controls block placement HDFS Client| HDFS Client| | HDFS Client
« Coordinates repair M
[NameNode] Y Y
> Agent: [DataNode] [DataNode] cee [DataNode]
* Performs coding operations OpenEC deployment on HDFS
» OECClient:

* Interfaces between
applications and storage

15

Basic operations:

» Writes

* Online encoding
 Offline encoding

» Normal reads
» Degraded reads

» Full-node recovery

OpenEC Design

Tasks:
> Load

« Loads an input block

» Fetch

« Retrieves blocks from other agents

» Compute

« Computes a new block

> Persist
 Returns a block

16

Parsing an ECDAG
> Online encoding for m

(6,4) RS code O | [CEL %
 On the write path Vi C Load b,
» Performed by client C V2 - S22 9
Vs C Load b,
Vg C Compute b, from {b,, b4, b,, b;} with
coding coefficients {1,1,1,1};
Compute b; from {b,, b4, b,, b;} with
coding coefficients {1,2,4,8};
V4 C =
V5 C =

- C Persist b,; Persist b,; Persist b,;
Persist b;; Persist b,; Persist b;;

17

Parsing an ECDAG
> Offline encoding for m

(6,4) RS code . t°a: EO
. \Y oa
« Blocks 0-3 are in 1 1 1
nodes 0-3 V, N, Load b,
: N L
 Performed by different b 2 0ad by
nodes Vg No Fetch b, from N,

Fetch b, from N,

Fetch b; from N,

Compute b, from {b,, by, b,, b3} with
coding coefficients {1,1,1,1};
Compute b; from {b,, b4, b,, b3} with
coding coefficients {1,2,4,8};

Vy N4 Fetch b, from N,; Persist b,

Vs N5 Fetch b; from N,; Persist b;

18

Automated Optimizations

» Automated BindX and BindY

« Examines subgraph structures and calls BindX and BindY automatically

» Hierarchy awareness

1) (2) B L] (8] (e s

[
e iy

OpenEC Implementation

» Middleware layer (7000+ lines-of-code)
« Coding operations in units of packets
* Intel ISA-L for erasure coding
« Redis for communications

» Integration with existing distributed storage systems
« HDFS-RAID
 Hadoop 3.0 HDFS
* QFS (see technical report)

» Each integration only makes < 450 lines-of-code changes
« Changes include: (1) interfacing with systems, (2) block placement

20

Experiments

» Local cluster
* 16 machines
* Quad-core 3.4 GHz Intel CPU
« 16 GiB RAM
* 10 Gb/s network

» Amazon EC2

« Up to 30 instances
* mb.xlarge instances
* 10 Gb/s network

21

Basic Operations in Local Cluster

HDFS-3 [l OpenEC 2000- 3 HDFS-RAID
20001 < ¥ %_ [l OpenEC
S X o £ 1500- -
0 ~ o =
S mEm O =
= — 1000-
Qo
_C
= 5001
0 :
Write Normal Degraded Offline Full-node
Read Read Encoding Recovery
Comparisons with HDFS-3 Comparisons with HDFS-RAID

» OpenEC preserves original HDFS performance

» OpenEC achieves much faster offline encoding than HDFS-RAID
with a simpler workflow

22

Comparisons with Native Coding (without 1/O)

<o) : ©
o [INative : .
80001 & T S~ [INative
- = S !OpenEC ' 3000{ & o . MOpentC
(92] (TS . Al) , L
5 60001 |- e & o 0 R o
= 2 2~ Bo = 22 o
< © Yo 2 = 2000+ —— 23 e~
+— 4000 - ™ < = — I 58
Q. N~ © Q. o S5O
— al Al — -
0 0
(6,4) (9,6) (12,8)(14,10) (6,4) (9,6) (12,8)(14,10)
Encoding Decoding

» ECDAG coding computations are slower than ISA-L
« 29-38% lower in encoding; 0.6-3.15% lower in decoding

» Remains much faster than I/O; limited overhead overall

23

Support of Erasure Coding Designs

(e}
o50] LIRS (9, 6) © 5001 LIRS (6, 4) 5001 @RS (9, 6) 80/ CRSEDRC
BLRC(10,6) & [l Butterfly (6, 4) 400- B PPR (9, 6) : N ©
200- . @ 4001 EIMISER (8, 4) ~ G [Pipeline (9, 6) % 60 < 0
™ 2] . ™ m i 2]
- Q 2 300- K D 300 ! @ ©
150 A\ S S S > S 40{ & ©
100 - 2 200+ 2 200 T 9 2 N
< g = - = ° = F 0.
50+ 5 ™ 100 : o 3 100+ 2 0
~ o @ ™
0 0 0
1 Gbps 10 Gbps 1 Gbps 10 Gbps G 10 Gbps (6, 4) (9, 6)
LRC Regenerating Repair DRC

codes algorithms

» Comparisons with six state-of-the-art erasure coding designs

» OpenEC'’s performance conforms to the theoretical gains in
network-bound environments

24

Automated Optimizations

120- . L]Default
> Automated ECDAG S [l Pipeline
customization for a -
80+ N~

hierarchical topology

Thpt (MiB/s)

N
o

» Up to 82% repair throughput
gain

(10,8) (12,10)

25

Scalability in Amazon EC2

8000 1
Q)
D 6000
=3
2 4000 -
-
|_
2000 -
0 :
Write Normal Degraded Offline Full-node
Read Read Encoding Recovery
Online Encoding Offline Encoding

» OpenEC scales well with number of instances

26

Conclusions

» OpenEC is a unified and configurable framework for flexible
erasure coding management

» Future work:
* Integration with more systems (e.g., Ceph, Swift)
« Combined with software-defined storage for better configurability

» Source code:
 http://adslab.cse.cuhk.edu.hk/software/openec

27

Backup

Question

» How to construct decoding ECDAGs for different combinations of
lost blocks?

» The Decode() function should construct different decoding
ECDAGs for two cases:

 Decoding one lost block: uses any repair-efficient approach
« Decoding multiple lost blocks: picks the first k available blocks

29

Question

» What happens if there is a failure during repair?

» We assume that OpenEC restarts the repair process by
connecting to the new set of available nodes.

30

Question

» What types of codes are supported or not supported?

» Supported:

« Linear codes (e.g., RS codes, regenerating codes, LRC)

» Not supported:
 Non-linear codes
« Sector-disk codes

31

Question

» Performance of automated BindX and BindY?

Thpt (MiB/s)

N
)
o

(@)
)
o

N
o
o

[INo Optimization
L |BindX
B BindX & BindY (default)

©
on ©

To) < ™
© ™

w1_
al[

o0
© O
0 O ™

179.5

2183

(8,6) (10,8) (12,10)

32

Question

» Performance in QFS

QFS [l OpenEC QFS [l OpenEC
800 1
D @ ﬁ ™ 2 — 800 g g o ©
M 6001 ~ & [© @ o @600 ©r o] =28
= ©o o S 0| O
— <t < = T
g 40071 @ @ a 400
= =
200 1 200
0 0
Write. Normal Degraded Write. Normal Degraded
Read Read Read Read

Single Client Multiple Clients

