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Introduction

» Fault tolerance for distributed storage is critical
 Availability: data remains accessible under failures
« Durability: no data loss even under failures

» Erasure coding is a promising redundancy technique
« Minimum data redundancy via “data encoding”
» Higher reliability with same storage redundancy than replication
« Reportedly deployed in Google, Azure, Facebook

* e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding)
- PBs saving



Erasure Coding

» Divide file data to k data blocks

» Encode k data blocks to n-k parity blocks

» Distribute the n erasure-coded blocks (coding group) to n nodes
» Fault-tolerance: any k out of n blocks can recover file data
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Erasure Coding

» Reed-Solomon (RS) codes are widely deployed
« Storage-optimal
* Generality for n and k
* Drawback: high repair penalty

» New erasure coding solutions

* Repair-optimal erasure codes

* e.g., regenerating codes [TIT’10]; locally repairable codes (LRCs) [ATC 12, PVLDB'13];
double regenerating codes (DRC) [TOS17]

« Repair-efficient algorithms
* e.g., Partial-parallel-repair (PPR) [Eurosys’16]; Repair pipelining [ATC17]



Challenge

» Deploying new erasure coding solutions in distributed storage
systems (DSSs) is a daunting task

* Re-engineering of DSS workflows (e.g., read/write paths)
« Hard to generalize for different DSSs

» Our past experience:
* Over 4K lines-of-code change to HDFS-RAID for adding DRC [ros'17]

» Review of six DSSs with erasure coding support
« HDFS-RAID, Hadoop 3.0 HDFS, QFS, Tahoe-LAFS, Ceph and Swift



Limitations of Current DSSs

» Hard to add advanced erasure codes
« Existing DSSs only provide interfaces for basic encoding/decoding operations
« Most DSSs do not support sub-packetization (e.g., regenerating codes)

» Hard to configure the workflows and placement of coding operations

Network Network

Repair in fetch-and-compute manner Repair pipelining [ATC'17] cannot be readily realized



Our Contributions

OpenEC: a unified and configurable framework for
erasure coding management

» Propose ECDAG, a directed-acyclic-graph abstraction for
realizing general erasure coding solutions

* Decoupling erasure coding management from DSS workflows

» Prototype OpenEC on HDFS-RAID, Hadoop 3 HDFS, and QFS

* Minimal code changes

» Extensive experiments on local and Amazon EC2 clusters



ECDAG

» (n, k) code
« Data blocks: by, ..., by 4
 Parity blocks: b, ..., b, 4
* Virtual blocks: b, fori=n

» An ECDAG is a directed acyclic graph that defines either an
encoding or a decoding operation
* Vertex v;: block b, in a coding group
* Edge ¢, block b; is an input to the linear combination of b,
« Each edge is associated with a coding coefficient



ECDAG

» ECDAGs for a (5,4) code:

» N

Encoding Dec°di"9 Partial-parallel repair
(PPRY) [mitra, Eurosys'16]




ECDAG

» ECDAGs for regenerating codes pimakis, T10] With sub-packetization
* W: sub-packetization level (number of sub-blocks per block)
* e.g., n=4, k=2, w=2

Layout Encoding Decoding
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ECDAG Primitives

Construction of an ECDAG:
» Join: describes linear combination
» BindX: co-locates coding operations at same level (i.e., x-direction)

» BindY: co-locates coding operations across levels (i.e., y-direction)
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ECDAG Primitives

» Encoding of (6,4) RS code

BindY

ECDAG* ecdag = new ECDAG();
ecdag->Join(4, {o,1,2,3}, {1,1,1,1});
ecdag->Join(5, {0,1,2,3}, {1,2,4,8});
int vidx = ecdag->BindX({4,5});
ecdag->BindY(vidx, 0);
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ECDAG Primitives

» Decoding via repair pipelining i, atc17:
* e.g., recovering the missing block 0 for (6, 4) RS code

ECDAG* ecdag = new ECDAG();
ecdag->Join(7, {1,2}, {1,1});
ecdag->BindY (7, 2);
ecdag->Join(8, {7,3}, {1,1});
ecdag->BindY (8, 3);
ecdag->Join(9, {8,4}, {1,1});
ecdag->BindY (9, 4);
ecdag->Join(0, {9}, {1});
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Erasure Coding Interfaces

class ECBase {
int n, k, w;
vector<int> ecoefs;
public:
// constructing encoding ECDAGs
ECDAG* Encode();

// constructing decoding ECDAGs
ECDAG* Decode(vector<int> from, vector<int> to);

// organizing blocks in groups (e.g., racks)
vector<vector<int>> Place();
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OpenEC Design

» Controller:
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* Interfaces between
applications and storage
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Basic operations:

» Writes

* Online encoding
 Offline encoding

» Normal reads
» Degraded reads

» Full-node recovery

OpenEC Design

Tasks:
> Load

« Loads an input block

» Fetch

« Retrieves blocks from other agents

» Compute

« Computes a new block

> Persist
 Returns a block
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Parsing an ECDAG
> Online encoding for m
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Parsing an ECDAG
> Offline encoding for m
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Automated Optimizations

» Automated BindX and BindY

« Examines subgraph structures and calls BindX and BindY automatically

» Hierarchy awareness
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OpenEC Implementation

» Middleware layer (7000+ lines-of-code)
« Coding operations in units of packets
* Intel ISA-L for erasure coding
« Redis for communications

» Integration with existing distributed storage systems
« HDFS-RAID
 Hadoop 3.0 HDFS
* QFS (see technical report)

» Each integration only makes < 450 lines-of-code changes
« Changes include: (1) interfacing with systems, (2) block placement
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Experiments

» Local cluster
* 16 machines
* Quad-core 3.4 GHz Intel CPU
« 16 GiB RAM
* 10 Gb/s network

» Amazon EC2

« Up to 30 instances
* mb.xlarge instances
* 10 Gb/s network
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Basic Operations in Local Cluster
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» OpenEC preserves original HDFS performance

» OpenEC achieves much faster offline encoding than HDFS-RAID
with a simpler workflow
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Comparisons with Native Coding (without 1/O)
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» ECDAG coding computations are slower than ISA-L
« 29-38% lower in encoding; 0.6-3.15% lower in decoding

» Remains much faster than I/O; limited overhead overall
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Support of Erasure Coding Designs
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» Comparisons with six state-of-the-art erasure coding designs

» OpenEC'’s performance conforms to the theoretical gains in
network-bound environments
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Automated Optimizations
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Scalability in Amazon EC2

8000 1
Q)
D 6000
=3
2 4000 -
-
|_
2000 -
0 :
Write  Normal Degraded Offline Full-node
Read Read Encoding Recovery
Online Encoding Offline Encoding

» OpenEC scales well with number of instances
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Conclusions

» OpenEC is a unified and configurable framework for flexible
erasure coding management

» Future work:
* Integration with more systems (e.g., Ceph, Swift)
« Combined with software-defined storage for better configurability

» Source code:
 http://adslab.cse.cuhk.edu.hk/software/openec
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Backup



Question

» How to construct decoding ECDAGs for different combinations of
lost blocks?

» The Decode() function should construct different decoding
ECDAGs for two cases:

 Decoding one lost block: uses any repair-efficient approach
« Decoding multiple lost blocks: picks the first k available blocks
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Question

» What happens if there is a failure during repair?

» We assume that OpenEC restarts the repair process by
connecting to the new set of available nodes.
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Question

» What types of codes are supported or not supported?

» Supported:

« Linear codes (e.g., RS codes, regenerating codes, LRC)

» Not supported:
 Non-linear codes
« Sector-disk codes
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Question

» Performance of automated BindX and BindY?
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Question

» Performance in QFS

QFS [l OpenEC QFS [l OpenEC
800 1
D @ ﬁ ™ 2 — 800 g g o ©
M 6001 ~ & [ © @ o @600 ©r o] =28
= ©o o S 0| O
— <t < = T
g 40071 @ @ a 400
= =
200 1 200
0 0
Write.  Normal Degraded Write.  Normal Degraded
Read Read Read Read

Single Client Multiple Clients



