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Garbage Collection Overhead in SSDs

o Garbage collection (GC) overhead
o Reclaiming free space requires copying valid pages
o Amplified writes shorten lifetime and reduce performance of SSDs

o How to minimize amplified writes
o Prevent scattered page invalidation
o Need to know similar lifetime data and physically separate them

Alternate placement Lifetime-aware placement
Erase for GC Erase for GC

Valid page
Invalid page

No
overhead

Large #
of page
copies

Block 0 Block 1 Block 0 Block 1

Placing data with similar lifetimes together can reduce GC overhead




Multi-stream: Minimize Write Amplification

o Data with different streams are physically separated

o Challenges of using the multi-stream feature
o Host: Difficult to know data lifetime in advance
o« SSD: # of supported streams may be different across SSDs

Prob. 1:
Application
modification

required

Multi-stream

application NAND Flash Memory

Automatic stream management is required

“The Multi-streamed SSD”, J. Kang et al., in HotStorage’14

Prob. 2:
May need to
re-assign if
# of streams

changes




Existing Automatic Stream Management

o AutoStream assigns stream at device driver layer based on
the access frequency of the same LBA
o Applicability is limited only when LBA access locality is obvious
o Does not work well when no apparent locality on LBA accesses
(e.g., append-only, write-once patterns)
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Data lifetime prediction for append-only workload is required

“AutoStream: Automatic Stream Management for multi-streamed SSDs”, J. Yang et al., in SYSTOR’17



Design Goal of Proposed Work

o Must automatically work with general workloads

o Streams are identified without modifying application

- Data lifetimes should be estimated at a higher abstraction level
than LBAs (I/O activities)

o Streams should be allocated automatically
- Similar lifetime data are mapped to the same stream
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Stream ldentification using I/O Activities

a 1/O activities show distinct lifetime patterns

o EX) 3 activities in RocksDB shows distinct lifetime patterns
- Logging: valid until data in memory are flushed (short lifetime)
- Flushing: deleted when top level of LSM-tree is full (short lifetime)
- Compaction: deleted when its level is full (long lifetime)

Data lifetime can be estimated by
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Program Context Can Distinguish Activities

o A program context (PC) is known to be an effective hint in
separating data with similar update period
o Represents a particular execution phase of a program

o lIdentified by summing program counter values of each execution
path of function calls
o EX) PC calculation with synthetic program
- Execution path to the write system call
Main () > func_B )1 func_A () > write_data ) write ()
- Addresses of program counter values in the stack

100000000004012da  func B

I
|
10000000000401024  func A I
|

100000000004001fb write_data

0000000000400d20  _start

- Result Summing all the values = 0x2408d00

“A Program Context-Aware Data Separation Technique for Reducing Garbage Collection Overhead in NAND Flash Memory”, K. Ha et al.,
SNAPI'11

9



Feasibility: Distinguishing Activities by PC

o Log data
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Overview of PCStream

PCStream
(Fully Automatic)

Application
(no modification)

Write

PC Extractor

PC Lifetime
Analyzer

PC to Stream
Mapper

Write Request with StreamID

Multi-stream SSD
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PC Extractor Module

PC Extractor

User Process J

‘ { Stack Analysis

PC Value
Computation

o PC extraction with frame pointer
o Recursively checking previous stack frames based on the frame

pointer register (EBP)

o PC extraction without frame pointer
o Frame pointer register is not available if omit-frame-pointer option is

used by compiler

o Scanning every word in the stack and check if it belongs to the

process’s code segment

User Process Stack
&[call Write... Table( )]+4

Frame Pointer

&[call BuildTable( )]+4

Frame Pointer

&[call ll;-lf;itE( )| +4

Frame Pointer

<with frame pointer>

User Process Stack

A

&c[call Write... Table( )]+4

Wirt. Addr. Space

User Process

Stack

Heap

&[call Huil-:-i.Tﬂble( )]+4

Data Segment

&[call H-’-I;itE( )]+4

3

Code Segment

<without frame pointer>
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PCs with Large Lifetime Variance

o Some PCs represent several I/O contexts
o When multiple I/O contexts are covered by the same execuction

to the write system call

o Example: compaction at different levels of RocksDB
o Regardless of compaction level, execution path to write system

call is the same
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Lifetime (# of writes)

Lifetimes of Compaction Data per Level

a Higher level is smaller than lower level in LSM tree
o Data in higher level are invalidated more frequently, shorter lifetime
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Practical Limitations on Streams

o Host data should be buffered per stream
« Hiding size difference between FTL and device

o Buffering data requires SSD resources
o Backup power capacity: storing data for sudden power off

o SRAM capacity: quick checkup of buffered data for read requests
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Internal Streams for GC

o Internal Stream: used only for data copy during GC
o No backup power capacity: original data remains in source block
o Slow (DRAM) memory: GC can be handled as background tasks
o PCStream can effectively doubled # of available streams
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Two-Phase Stream Decision

a For large variance PCs, apply 2-phase stream decision
o 1stphase (host level): A stream is assigned to the PC

o 2" phase (device level): long-lived data are assigned to internal
stream

Long-lived data in L4 are
moved to internal stream

Repeated copy of
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Using 2"d phase decision can avoid repeated copy of long-lived data
In the large lifetime variance PC 18
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Experimental Setting

o Host

o Linux kernel 4.5 with PCStream implementation

o SSD

« Samsung PM963 SSD modified for P i gy e e
PM963 SSD with 9 streams

internal stream support

o Benchmark

(9 internal streams are added)

Benchmark Type Types of activities
RocksDB Append-only Logging, Flushing, Compaction
Cassandra Append-only Logging, Flushing, Compaction
SQLite Updating Logging, Updating DB table
GCC Write-once Outputting temp files, executable files
Mixed 1 (RocksDB+GCC) A+W
Mixed 2 (SQLite+GCC) Uu+w
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WAF Comparison

WAF

[l Baseline W AutoStream B ManualStream @ PCStream

69%

49%

RocksDB Cassandra SQLite GCC Mixed 1 Mixed 2 Geo. Mean

(R+G) (S+G)

High efficiency of PCStream comes from
- LBA-oblivious data separation
- Internal streams
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Per-stream Lifetime Distributions (Mixed 1)

Long lifetimes
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Impact of Internal Streams

B RocksDB OSqQLlite O GCC O Mixed 1 B Mixed 2

Baseline & Autostream show insufficient improvement
41 due to their poor initial allocation quality
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Conclusions

o We have presented the PCStream for improving
performance and reducing WAF of multi-stream SSDs

o Automatic stream management technique using program context
to effectively estimate data lifetime

o Internal stream can separate long-lived data from future short
lifetime data

o« WAF was reduced by up to 69% over existing automatic technique

o Future work

o Support applications based on indirect writes
- Internal write buffer with flushing thread
- mmap-related functions
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