Fully Automatic Stream Management
for Multi-Streamed SSDs
using Program Contexts

Taejin Kim!, Duwon Hong?!, Sangwook Shane Hahn?,
Myoungjun Chun?, Sungjin Lee3,
Jooyoung Hwang#, Jongyoul Lee#, and Jihong Kim?

1Seoul National University, 2Western Digital,
SDGIST, 4Samsung Electronics

17t USENIX Conference on File and Storage Technologies, 2019




Outline

o Introduction & Motivation

o Automatic Stream ldentification
o Design of PCStream

o Evaluations

a Conclusions



Garbage Collection Overhead in SSDs

o Garbage collection (GC) overhead
o Reclaiming free space requires copying valid pages
o Amplified writes shorten lifetime and reduce performance of SSDs

o How to minimize amplified writes
o Prevent scattered page invalidation
o Need to know similar lifetime data and physically separate them

Alternate placement Lifetime-aware placement
Erase for GC Erase for GC

Valid page
Invalid page

No
overhead

Large #
of page
copies

Block 0 Block 1 Block 0 Block 1

Placing data with similar lifetimes together can reduce GC overhead




Multi-stream: Minimize Write Amplification

o Data with different streams are physically separated

o Challenges of using the multi-stream feature
o Host: Difficult to know data lifetime in advance
o« SSD: # of supported streams may be different across SSDs

Prob. 1:
Application
modification

required

Multi-stream

application NAND Flash Memory

Automatic stream management is required

“The Multi-streamed SSD”, J. Kang et al., in HotStorage’14

Prob. 2:
May need to
re-assign if
# of streams

changes




Existing Automatic Stream Management

o AutoStream assigns stream at device driver layer based on
the access frequency of the same LBA
o Applicability is limited only when LBA access locality is obvious
o Does not work well when no apparent locality on LBA accesses
(e.g., append-only, write-once patterns)

6x10°

6000

5000 - ’Lc'g"
0834000 ] § axi0® [
= 3000 ¢ S
'S 2000 ¢ =
% + / szlo6 ;
o 1000 * =
— o=

0 T T j N
0 5000000 10000000 15000000 o T bR, e L g
Logcal Block Address Loglcal Block Address
<Sequential Access Patterns> <Append-only Lifetime Patterns>
(Multi-media) (RocksDB)

Data lifetime prediction for append-only workload is required

“AutoStream: Automatic Stream Management for multi-streamed SSDs”, J. Yang et al., in SYSTOR’17



Design Goal of Proposed Work

o Must automatically work with general workloads

o Streams are identified without modifying application

- Data lifetimes should be estimated at a higher abstraction level
than LBAs (I/O activities)

o Streams should be allocated automatically
- Similar lifetime data are mapped to the same stream

>y
ROC kS DB cassandra My

.~ Automatic Stream Identification

I
v v

Automatic Strea“_‘ Short Lifetime|  |Long Lifetime
Management Technique Data Data
v v
| Automatic Stream Mapping
I
! Y’

Stream 1 | StreamN




Outline

o Introduction & Motivation

o Automatic Stream ldentification
o Design of PCStream

o Evaluations

o Conclusions



Stream ldentification using I/O Activities

a 1/O activities show distinct lifetime patterns

o EX) 3 activities in RocksDB shows distinct lifetime patterns
- Logging: valid until data in memory are flushed (short lifetime)
- Flushing: deleted when top level of LSM-tree is full (short lifetime)
- Compaction: deleted when its level is full (long lifetime)

Data lifetime can be estimated by
-¥_ 1/O activities
|
LO | : . :
7 ~ategl How to distinguish 1/O
L1 3. compaction ! o
5 activities?




Program Context Can Distinguish Activities

o A program context (PC) is known to be an effective hint in
separating data with similar update period
o Represents a particular execution phase of a program

o lIdentified by summing program counter values of each execution
path of function calls
o EX) PC calculation with synthetic program
- Execution path to the write system call
Main () > func_B )1 func_A () > write_data ) write ()
- Addresses of program counter values in the stack

100000000004012da  func B

I
|
10000000000401024  func A I
|

100000000004001fb write_data

0000000000400d20  _start

- Result Summing all the values = 0x2408d00

“A Program Context-Aware Data Separation Technique for Reducing Garbage Collection Overhead in NAND Flash Memory”, K. Ha et al.,
SNAPI'11

9



Feasibility: Distinguishing Activities by PC

o Log data

7 7

= =

5 5

4= 1x106 | 4= 1x10° |

S S

E E

[} [}

E E

3 3

3 o 3 o
Logical Block Address Logical Block Address

<manual> <PC #0>
o Flush data

] ]

B 5

4= 1x10° | 4 1x10° |

S o

& & . N

2 K wn Nt Ry o 2 bty g s T e T
M '1."3-. W R

E‘ * \{“w*% % E' “. m‘:* «‘;ﬁ? IN::. v}“m *%

g N g* ™ » *‘i -t + L: ’m - *:* - o Wt

- 0 . . N . . - 0 . . AR .
Logical Block Address Logical Block Address

<manual> <PC #1>



Outline

o Introduction & Motivation

o Automatic Stream ldentification
o Design of PCStream

o Evaluations

o Conclusions

11



Overview of PCStream

PCStream
(Fully Automatic)

Application
(no modification)

Write

PC Extractor

PC Lifetime
Analyzer

PC to Stream
Mapper

Write Request with StreamID

Multi-stream SSD

12



PC Extractor Module

PC Extractor

User Process J

‘ { Stack Analysis

PC Value
Computation

o PC extraction with frame pointer
o Recursively checking previous stack frames based on the frame

pointer register (EBP)

o PC extraction without frame pointer
o Frame pointer register is not available if omit-frame-pointer option is

used by compiler

o Scanning every word in the stack and check if it belongs to the

process’s code segment

User Process Stack
&[call Write... Table( )]+4

Frame Pointer

&[call BuildTable( )]+4

Frame Pointer

&[call ll;-lf;itE( )| +4

Frame Pointer

<with frame pointer>

User Process Stack

A

&c[call Write... Table( )]+4

Wirt. Addr. Space

User Process

Stack

Heap

&[call Huil-:-i.Tﬂble( )]+4

Data Segment

&[call H-’-I;itE( )]+4

3

Code Segment

<without frame pointer>

13



PCs with Large Lifetime Variance

o Some PCs represent several I/O contexts
o When multiple I/O contexts are covered by the same execuction

to the write system call

o Example: compaction at different levels of RocksDB
o Regardless of compaction level, execution path to write system

call is the same

6
__6x10
v
»)
=
" -
,34;;10“ B Jeel .
'45 t’oa . . .
¥ F . e L)
1 R " ¢ éj.‘...;;,., &
o -
L2x10° ¥ fiR
= - 1
"=
D
t . o Sy . N o g 3 A " I T R A “;::-\_:E
Logical Block Address

<Compaction PC>

14



+ o))

Lifetime (# of writes)

Lifetimes of Compaction Data per Level

a Higher level is smaller than lower level in LSM tree
o Data in higher level are invalidated more frequently, shorter lifetime

Level 1 [ | 300 MB

_____________

Level » (i DERER) ;8
Level 3 R EDERERE o8

Level s (EREREEEBEEE: oG

---------------------------------------------

x10° 6x10° __6x10°
A 8
x10° ;4)(106 34;(10"’, .,
° 5
* ¥
x106 .‘LE:ZXIOf’ gleoﬁ
0 WSS AT () IS ' XN I 0 Lo AR AP P
Loglcal Block Address Loglcal BIOCk Address Logical Block Address
<Manual: L2> <Manual: L3> <Manual: L4 (Lowest)>

More streams are necessary for separating different lifetime data | 15




Practical Limitations on Streams

o Host data should be buffered per stream
« Hiding size difference between FTL and device

o Buffering data requires SSD resources
o Backup power capacity: storing data for sudden power off

o SRAM capacity: quick checkup of buffered data for read requests

Stream1 Stream 2

P e e T

7

+ SSD Resources

—— o o e m m mm E ——

\

|

|

I Backup Backup

SRAM SRAM
|
FIOIEL (b (b I Sl Capacity FOMED Capacity CPOW acity

I ap
|

|

1

SRAM
v Capacity ~~/

————————————

| Buffer Space ‘ Buffer Space

Backup
Capacity Capacity. Capacity.

-_———

Increasing number of streams is difficult

(b 3 (b ™ Out of lResource

16



Internal Streams for GC

o Internal Stream: used only for data copy during GC
o No backup power capacity: original data remains in source block
o Slow (DRAM) memory: GC can be handled as background tasks
o PCStream can effectively doubled # of available streams
Stream1 Stream 2

————————————————

7

+ SSD Resources

‘ Buffer Space ‘ Buffer Space

- o o

\
|
Backup ! Backup Backup
Power : Power Cisgclzvilty Power Cisgclzvilty
Capacity | Capacity Capacity
|
|
SRAM i (b . (b .
v Capacity J
Internal Internal
Stream1 Stream 2
Data in Background Data in Background

source block task source block task



Two-Phase Stream Decision

a For large variance PCs, apply 2-phase stream decision
o 1stphase (host level): A stream is assigned to the PC

o 2" phase (device level): long-lived data are assigned to internal
stream

Long-lived data in L4 are
moved to internal stream

Repeated copy of

: GC1 Internal
long-livec :
Stream A Stream A/__\tream of A _6xo |
Sty SR GC2 E-mo , —
- % S AT ) Ty -
Block 0 Blockl  Block 2 Block O Block 1 BlockX 5 k9 -
<eXISt|ng pOIICy> <2nd phase deC|S|0n> - ok Loeical Block Address

<Manual: L4 (Lowest)>

Using 2"d phase decision can avoid repeated copy of long-lived data
In the large lifetime variance PC 18




Outline

o Introduction & Motivation

o Automatic Stream ldentification
o Design of PCStream

o Evaluations

o Conclusions

19



Experimental Setting

o Host

o Linux kernel 4.5 with PCStream implementation

o SSD

« Samsung PM963 SSD modified for P i gy e e
PM963 SSD with 9 streams

internal stream support

o Benchmark

(9 internal streams are added)

Benchmark Type Types of activities
RocksDB Append-only Logging, Flushing, Compaction
Cassandra Append-only Logging, Flushing, Compaction
SQLite Updating Logging, Updating DB table
GCC Write-once Outputting temp files, executable files
Mixed 1 (RocksDB+GCC) A+W
Mixed 2 (SQLite+GCC) Uu+w

20



WAF Comparison

WAF

[l Baseline W AutoStream B ManualStream @ PCStream

69%

49%

RocksDB Cassandra SQLite GCC Mixed 1 Mixed 2 Geo. Mean

(R+G) (S+G)

High efficiency of PCStream comes from
- LBA-oblivious data separation
- Internal streams

21



Per-stream Lifetime Distributions (Mixed 1)

Long lifetimes

1000000 T - '
7] 1 1 1
O 1 1 1
= 800000 F < 75%percentite & :
; < 60™ percentile ! I
g5 600000 r 50t percentile : :
++ 40: percentile : '

< :
\-c-l-; 400000 F 25" percentile : i
E : !
S 200000 H{mm wm Ul & &= | TV cooooooooo—— - i :
£ : | -
S 0 | o == B Ty oo :

ol1]2]3]als|s|7]8]of1]2]|s]als]6]7]s
I
AutoStream i PCStream

Smaller variances of short lifetimes

Separating long lifetime data results better WAF reduction
in small variance streams




Impact of Internal Streams

B RocksDB OSqQLlite O GCC O Mixed 1 B Mixed 2

Baseline & Autostream show insufficient improvement
41 due to their poor initial allocation quality

=

TT]

w/o IS w/ IS w/o IS w/ IS w/o IS w/ IS

Baseline AutoStream PCStream




Conclusions

o We have presented the PCStream for improving
performance and reducing WAF of multi-stream SSDs

o Automatic stream management technique using program context
to effectively estimate data lifetime

o Internal stream can separate long-lived data from future short
lifetime data

o« WAF was reduced by up to 69% over existing automatic technique

o Future work

o Support applications based on indirect writes
- Internal write buffer with flushing thread
- mmap-related functions

24



