
Fully Automatic Stream Management 

for Multi-Streamed SSDs 

using Program Contexts

Taejin Kim1, Duwon Hong1, Sangwook Shane Hahn2, 

Myoungjun Chun1, Sungjin Lee3,

Jooyoung Hwang4, Jongyoul Lee4, and Jihong Kim1

1Seoul National University, 2Western Digital, 
3DGIST, 4Samsung Electronics

17th USENIX Conference on File and Storage Technologies, 2019



2

Outline

❑ Introduction & Motivation

❑ Automatic Stream Identification

❑ Design of PCStream

❑ Evaluations 

❑ Conclusions



3

No 
overhead

Garbage Collection Overhead in SSDs

❑ Garbage collection (GC) overhead

⚫ Reclaiming free space requires copying valid pages

⚫ Amplified writes shorten lifetime and reduce performance of SSDs

❑ How to minimize amplified writes

⚫ Prevent scattered page invalidation

⚫ Need to know similar lifetime data and physically separate them

Placing data with similar lifetimes together can reduce GC overhead

Alternate placement

Block 0

Invalid page

Valid page

Block 1 Block 0 Block 1

Lifetime-aware placement

Large # 
of page 
copies

Erase for GC Erase for GC



4

SSD

NAND Flash Memory

❑ Data with different streams are physically separated

❑ Challenges of using the multi-stream feature

⚫ Host: Difficult to know data lifetime in advance

⚫ SSD: # of supported streams may be different across SSDs

Multi-stream: Minimize Write Amplification

“The Multi-streamed SSD”, J. Kang et al., in HotStorage’14

Multi-stream

interface
Host

application

Prob. 1:
Application 
modification 

required

Prob. 2:
May need to 
re-assign if 

# of streams 
changes

Automatic stream management is required



5

Existing Automatic Stream Management

❑ AutoStream assigns stream at device driver layer based on 

the access frequency of the same LBA

⚫ Applicability is limited only when LBA access locality is obvious

⚫ Does not work well when no apparent locality on LBA accesses 

(e.g., append-only, write-once patterns)

“AutoStream: Automatic Stream Management for multi-streamed SSDs”, J. Yang et al., in SYSTOR’17

Data lifetime prediction for append-only workload is required

<Append-only Lifetime Patterns> 
(RocksDB)

0

1000

2000

3000

4000

5000

6000

0 5000000 10000000 15000000

L
o

g
ic

a
l 
T

im
e

Logcal Block Address

<Sequential Access Patterns> 
(Multi-media)



6

Design Goal of Proposed Work

❑ Must automatically work with general workloads

⚫ Streams are identified without modifying application

− Data lifetimes should be estimated at a higher abstraction level 

than LBAs (I/O activities)

⚫ Streams should be allocated automatically

− Similar lifetime data are mapped to the same stream

Automatic Stream Identification

Automatic Stream Mapping

Automatic Stream 
Management Technique

Short Lifetime 
Data

Long Lifetime
Data

Stream1 StreamN…



7

Outline

❑ Introduction & Motivation

❑ Automatic Stream Identification

❑ Design of PCStream

❑ Evaluations 

❑ Conclusions



8

Stream Identification using I/O Activities

❑ I/O activities show distinct lifetime patterns

⚫ Ex) 3 activities in RocksDB shows distinct lifetime patterns

− Logging: valid until data in memory are flushed (short lifetime)

− Flushing: deleted when top level of LSM-tree is full (short lifetime)

− Compaction: deleted when its level is full (long lifetime)

Data lifetime can be estimated by 

I/O activities
1. logging

2. flushing

3. compaction
How to distinguish I/O 

activities?

disk

memory

Log
L0

L1

L2



9

Program Context Can Distinguish Activities

❑ A program context (PC) is known to be an effective hint in 

separating data with similar update period

⚫ Represents a particular execution phase of a program

⚫ Identified by summing program counter values of each execution 

path of function calls

⚫ Ex) PC calculation with synthetic program

− Execution path to the write system call

− Addresses of program counter values in the stack

− Result 

“A Program Context-Aware Data Separation Technique for Reducing Garbage Collection Overhead in NAND Flash Memory”, K. Ha et al.,
SNAPI’11

Main () func_B () func_A () write_data () write ()

Summing all the values = 0x2408d00



10

Feasibility: Distinguishing Activities by PC

❑ Log data

❑ Flush data

<manual> <PC #0>

<manual> <PC #1>



11

Outline

❑ Introduction & Motivation

❑ Automatic Stream Identification

❑ Design of PCStream

❑ Evaluations 

❑ Conclusions



12

Overview of PCStream

PCStream
(Fully Automatic)

PC Extractor

PC Lifetime 
Analyzer

PC to Stream
Mapper

Application
(no modification)

Multi-stream SSD

User Process 

Stack Analysis

PC Value

Computation

Data Lifetime

Computation

Maintain Lifetime 

per PC

Clustering PCs w/ 
Similar Lifetime

Mapping Stream 

to PC Group

Write

Write Request with StreamID



13

PC Extractor Module

❑ PC extraction with frame pointer

⚫ Recursively checking previous stack frames based on the frame 

pointer register (EBP)

❑ PC extraction without frame pointer

⚫ Frame pointer register is not available if omit-frame-pointer option is 

used by compiler

⚫ Scanning every word in the stack and check if it belongs to the 

process’s code segment

<with frame pointer> <without frame pointer>



14

PCs with Large Lifetime Variance

❑ Some PCs represent several I/O contexts

⚫ When multiple I/O contexts are covered by the same execuction

to the write system call

❑ Example: compaction at different levels of RocksDB

⚫ Regardless of compaction level, execution path to write system 

call is the same 

<Compaction PC>



15

Lifetimes of Compaction Data per Level

❑ Higher level is smaller than lower level in LSM tree

⚫ Data in higher level are invalidated more frequently, shorter lifetime

<Manual: L2> <Manual: L3> <Manual: L4 (Lowest)>

More streams are necessary for separating different lifetime data



16

Practical Limitations on Streams

❑ Host data should be buffered per stream

⚫ Hiding size difference between FTL and device

❑ Buffering data requires SSD resources

⚫ Backup power capacity: storing data for sudden power off

⚫ SRAM capacity: quick checkup of buffered data for read requests 

Buffer SpaceSSD Resources

Backup 
Power 

Capacity

Stream1

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 2

SRAM 
Capacity

Backup 
Power 

Capacity

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 3

SRAM 
Capacity

Out of Resource

Increasing number of streams is difficult



17

Internal Streams for GC

❑ Internal Stream: used only for data copy during GC

⚫ No backup power capacity: original data remains in source block

⚫ Slow (DRAM) memory: GC can be handled as background tasks

⚫ PCStream can effectively doubled # of available streams

Buffer SpaceSSD Resources

Backup 
Power 

Capacity

Stream1

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 2

SRAM 
Capacity

Backup 
Power 

Capacity

SRAM 
Capacity

Internal 
Stream1

Data in 
source block

Background 
task

Internal 
Stream 2

Data in 
source block

Background 
task



18

Two-Phase Stream Decision

❑ For large variance PCs, apply 2-phase stream decision

⚫ 1st phase (host level): A stream is assigned to the PC

⚫ 2nd phase (device level): long-lived data are assigned to internal 

stream

<2nd phase decision>
Block 2Block 1

GC2

<existing policy>
Block 1

GC2

Block X

Using 2nd phase decision can avoid repeated copy of long-lived data

in the large lifetime variance PC

Stream A Stream A

Repeated copy of 
long-lived data

Block 0

GC1

Block 0

GC1 Internal 

Stream of A

<Manual: L4 (Lowest)>

Long-lived data in L4 are
moved to internal stream



19

Outline

❑ Introduction & Motivation

❑ Automatic Stream Identification

❑ Design of PCStream

❑ Evaluations

❑ Conclusions



20

Experimental Setting

❑ Host

⚫ Linux kernel 4.5 with PCStream implementation

❑ SSD

⚫ Samsung PM963 SSD modified for

internal stream support

❑ Benchmark

Benchmark Type Types of activities

RocksDB Append-only Logging, Flushing, Compaction

Cassandra Append-only Logging, Flushing, Compaction

SQLite Updating Logging, Updating DB table

GCC Write-once Outputting temp files, executable files

Mixed 1 (RocksDB+GCC) A + W

Mixed 2 (SQLite+GCC) U + W

PM963 SSD with 9 streams
(9 internal streams are added)



21

WAF Comparison

High efficiency of PCStream comes from 

- LBA-oblivious data separation 

- Internal streams

0

1

2

3

4

5

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo. Mean

W
A

F

Baseline AutoStream ManualStream PCStream

49%

69%



22

Per-stream Lifetime Distributions (Mixed 1)

Separating long lifetime data results better WAF reduction 
in small variance streams

Smaller variances of short lifetimes

Long lifetimes



23

Impact of Internal Streams

Baseline & Autostream show insufficient improvement

due to their poor initial allocation quality



24

Conclusions

❑ We have presented the PCStream for improving 

performance and reducing WAF of multi-stream SSDs

⚫ Automatic stream management technique using program context

to effectively estimate data lifetime

⚫ Internal stream can separate long-lived data from future short 

lifetime data 

⚫ WAF was reduced by up to 69% over existing automatic technique

❑ Future work

⚫ Support applications based on indirect writes

− Internal write buffer with flushing thread

− mmap-related functions


