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No 
overhead

Garbage Collection Overhead in SSDs

❑ Garbage collection (GC) overhead

⚫ Reclaiming free space requires copying valid pages

⚫ Amplified writes shorten lifetime and reduce performance of SSDs

❑ How to minimize amplified writes

⚫ Prevent scattered page invalidation

⚫ Need to know similar lifetime data and physically separate them

Placing data with similar lifetimes together can reduce GC overhead

Alternate placement

Block 0

Invalid page

Valid page

Block 1 Block 0 Block 1

Lifetime-aware placement

Large # 
of page 
copies

Erase for GC Erase for GC
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SSD

NAND Flash Memory

❑ Data with different streams are physically separated

❑ Challenges of using the multi-stream feature

⚫ Host: Difficult to know data lifetime in advance

⚫ SSD: # of supported streams may be different across SSDs

Multi-stream: Minimize Write Amplification

“The Multi-streamed SSD”, J. Kang et al., in HotStorage’14

Multi-stream

interface
Host

application

Prob. 1:
Application 
modification 

required

Prob. 2:
May need to 
re-assign if 

# of streams 
changes

Automatic stream management is required
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Existing Automatic Stream Management

❑ AutoStream assigns stream at device driver layer based on 

the access frequency of the same LBA

⚫ Applicability is limited only when LBA access locality is obvious

⚫ Does not work well when no apparent locality on LBA accesses 

(e.g., append-only, write-once patterns)

“AutoStream: Automatic Stream Management for multi-streamed SSDs”, J. Yang et al., in SYSTOR’17

Data lifetime prediction for append-only workload is required

<Append-only Lifetime Patterns> 
(RocksDB)
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Design Goal of Proposed Work

❑ Must automatically work with general workloads

⚫ Streams are identified without modifying application

− Data lifetimes should be estimated at a higher abstraction level 

than LBAs (I/O activities)

⚫ Streams should be allocated automatically

− Similar lifetime data are mapped to the same stream

Automatic Stream Identification

Automatic Stream Mapping

Automatic Stream 
Management Technique

Short Lifetime 
Data

Long Lifetime
Data

Stream1 StreamN…
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Stream Identification using I/O Activities

❑ I/O activities show distinct lifetime patterns

⚫ Ex) 3 activities in RocksDB shows distinct lifetime patterns

− Logging: valid until data in memory are flushed (short lifetime)

− Flushing: deleted when top level of LSM-tree is full (short lifetime)

− Compaction: deleted when its level is full (long lifetime)

Data lifetime can be estimated by 

I/O activities
1. logging

2. flushing

3. compaction
How to distinguish I/O 

activities?

disk

memory

Log
L0

L1

L2
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Program Context Can Distinguish Activities

❑ A program context (PC) is known to be an effective hint in 

separating data with similar update period

⚫ Represents a particular execution phase of a program

⚫ Identified by summing program counter values of each execution 

path of function calls

⚫ Ex) PC calculation with synthetic program

− Execution path to the write system call

− Addresses of program counter values in the stack

− Result 

“A Program Context-Aware Data Separation Technique for Reducing Garbage Collection Overhead in NAND Flash Memory”, K. Ha et al.,
SNAPI’11

Main () func_B () func_A () write_data () write ()

Summing all the values = 0x2408d00
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Feasibility: Distinguishing Activities by PC

❑ Log data

❑ Flush data

<manual> <PC #0>

<manual> <PC #1>
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Overview of PCStream

PCStream
(Fully Automatic)

PC Extractor

PC Lifetime 
Analyzer

PC to Stream
Mapper

Application
(no modification)

Multi-stream SSD

User Process 

Stack Analysis

PC Value

Computation

Data Lifetime

Computation

Maintain Lifetime 

per PC

Clustering PCs w/ 
Similar Lifetime

Mapping Stream 

to PC Group

Write

Write Request with StreamID
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PC Extractor Module

❑ PC extraction with frame pointer

⚫ Recursively checking previous stack frames based on the frame 

pointer register (EBP)

❑ PC extraction without frame pointer

⚫ Frame pointer register is not available if omit-frame-pointer option is 

used by compiler

⚫ Scanning every word in the stack and check if it belongs to the 

process’s code segment

<with frame pointer> <without frame pointer>
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PCs with Large Lifetime Variance

❑ Some PCs represent several I/O contexts

⚫ When multiple I/O contexts are covered by the same execuction

to the write system call

❑ Example: compaction at different levels of RocksDB

⚫ Regardless of compaction level, execution path to write system 

call is the same 

<Compaction PC>
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Lifetimes of Compaction Data per Level

❑ Higher level is smaller than lower level in LSM tree

⚫ Data in higher level are invalidated more frequently, shorter lifetime

<Manual: L2> <Manual: L3> <Manual: L4 (Lowest)>

More streams are necessary for separating different lifetime data
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Practical Limitations on Streams

❑ Host data should be buffered per stream

⚫ Hiding size difference between FTL and device

❑ Buffering data requires SSD resources

⚫ Backup power capacity: storing data for sudden power off

⚫ SRAM capacity: quick checkup of buffered data for read requests 

Buffer SpaceSSD Resources

Backup 
Power 

Capacity

Stream1

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 2

SRAM 
Capacity

Backup 
Power 

Capacity

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 3

SRAM 
Capacity

Out of Resource

Increasing number of streams is difficult
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Internal Streams for GC

❑ Internal Stream: used only for data copy during GC

⚫ No backup power capacity: original data remains in source block

⚫ Slow (DRAM) memory: GC can be handled as background tasks

⚫ PCStream can effectively doubled # of available streams

Buffer SpaceSSD Resources

Backup 
Power 

Capacity

Stream1

SRAM 
Capacity

Buffer Space

Backup 
Power 

Capacity

Stream 2

SRAM 
Capacity

Backup 
Power 

Capacity

SRAM 
Capacity

Internal 
Stream1

Data in 
source block

Background 
task

Internal 
Stream 2

Data in 
source block

Background 
task
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Two-Phase Stream Decision

❑ For large variance PCs, apply 2-phase stream decision

⚫ 1st phase (host level): A stream is assigned to the PC

⚫ 2nd phase (device level): long-lived data are assigned to internal 

stream

<2nd phase decision>
Block 2Block 1

GC2

<existing policy>
Block 1

GC2

Block X

Using 2nd phase decision can avoid repeated copy of long-lived data

in the large lifetime variance PC

Stream A Stream A

Repeated copy of 
long-lived data

Block 0

GC1

Block 0

GC1 Internal 

Stream of A

<Manual: L4 (Lowest)>

Long-lived data in L4 are
moved to internal stream
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Experimental Setting

❑ Host

⚫ Linux kernel 4.5 with PCStream implementation

❑ SSD

⚫ Samsung PM963 SSD modified for

internal stream support

❑ Benchmark

Benchmark Type Types of activities

RocksDB Append-only Logging, Flushing, Compaction

Cassandra Append-only Logging, Flushing, Compaction

SQLite Updating Logging, Updating DB table

GCC Write-once Outputting temp files, executable files

Mixed 1 (RocksDB+GCC) A + W

Mixed 2 (SQLite+GCC) U + W

PM963 SSD with 9 streams
(9 internal streams are added)
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WAF Comparison

High efficiency of PCStream comes from 

- LBA-oblivious data separation 

- Internal streams

0

1

2

3

4

5

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo. Mean

W
A

F

Baseline AutoStream ManualStream PCStream

49%

69%
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Per-stream Lifetime Distributions (Mixed 1)

Separating long lifetime data results better WAF reduction 
in small variance streams

Smaller variances of short lifetimes

Long lifetimes
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Impact of Internal Streams

Baseline & Autostream show insufficient improvement

due to their poor initial allocation quality
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Conclusions

❑ We have presented the PCStream for improving 

performance and reducing WAF of multi-stream SSDs

⚫ Automatic stream management technique using program context

to effectively estimate data lifetime

⚫ Internal stream can separate long-lived data from future short 

lifetime data 

⚫ WAF was reduced by up to 69% over existing automatic technique

❑ Future work

⚫ Support applications based on indirect writes

− Internal write buffer with flushing thread

− mmap-related functions


