
Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, 
Kesari Mishra

Storage Gardening: Using a Virtualization 
Layer for Efficient Defragmentation in the 

WAFL File System

1

NetApp Inc.



Outline
¡ Some WAFL Background
¡ Defragmentation techniques in WAFL

– Multi-core systems, multiple storage devices of different media
– Trade-offs for enterprise-grade system
– Multiple applications and use-cases
– All features (eg. snapshots) must be preserved

¡ Evaluation & some history

2



Forms of Fragmentation
¡ File layout fragmentation

– Impacts sequential read performance
– Mitigation: predictive/speculative readahead algorithms
– Unavoidable: more reads IOs

¡ Free space fragmentation
– Impacts write throughput of file/storage system
– Impacts file layout

¡ Intra-block fragmentation
– WAFL supports sub-block compaction & addressing
– Impacts achieved storage efficiency

¡ Briefly discussed: Objects in an object tier

3



WAFL Background
¡ Runs in the kernel space of proprietary OS: ONTAP

¡ Multi-core, multi-protocol (NFS, SMB, SCSI, NVMe, etc.), multi-workload

¡ Multi-media: HDDs, SSDs, object store, cloud, flash devices, and more

¡ WAFL is feature-rich

¡ Typical deployment:

– One node: 100’s of FlexVols (file systems), 100’s of TiB, 1000’s of LUNs, with dozens 
of applications

– Several features enabled: snapshots, file cloning, file system cloning, replication, 
dedupe, compression, mobility, encryption, etc.

¡ Copy-On-Write: so has the potential to fragment

– Storage gardening techniques

4



FlexVols & Aggregates
¡ Aggregate: pool of storage
¡ FlexVol: namespace exported to 

clients—files, dirs, LUNs
¡ Each FlexVol & Aggr is a WAFL 

file system
– tree of blocks rooted at 

superblock, leaves of tree 
contain data of user files & 
metafiles

¡ Each FlexVol stored as a 
container file

5

... ...
RG of HDDs RG of SSDs Object store

aggrA

FlexVol1 FlexVol2 ... FlexVoln

Container
File 1

Container
File 2

Container
File n

...



FlexVols & Aggregates

¡ 4KB block number spaces:
– V in FlexVol
– P in aggregate

¡ FlexVol structures cache P
– For performance

¡ V->P indirection used for 
several features in WAFL
– Also for storage gardening 

techniques

6

P1

V1

P2

V2

Container file
P1

… …

P2

…

File A 

P1V1

File B 

P2V2

FlexVol

Aggr



Free Space Fragmentation

¡ Results in "partial" stripe writes
– More reads & compute for xor/parity, 

more writeIOs, poor file layout

¡ Latency of write-op not directly affected
– Ack’ed after logging to fast NVRAM

¡ WAFL checkpoints ~GBs of dirty content
– Should complete in few seconds

– Lower device write throughput => 
longer checkpoint

– Impacts op latency & IOPS throughput

7

D1 D2 D3 P

Used Block
Free Block



WAFL: Segment Cleaning
¡ Each block stored with WAFL context

– For protection against lost writes
– Identifies file + offset
– FlexVol block => container file

¡ Loaded as dirty container leaf block
¡ Rewritten (moved) by next CP

– Preserves snapshots in FlexVol
– More efficient

¡ Lazy fixup of stale cached P
– WAFL context used to catch stale P
– Read redirected to container file

¡ CSC: JIT cleaning of segments

8

Used Free
D1 D4D2 D3

P1

…

…
P1’
P2’
P3’

P4

…

…
P4’
P5’

P2
…

…
P5

P3

…

…



CSC Evaluation: Summary
¡ All-HDD: 

– With CSC: Op latency & write chain length stabilize after 35 days
¡ SSD+HDD:

– Hot spots of working set stay in SSD tier; SSDs fragment quickly
– HDD write chain length stabilizes after 22 days
– CSC in SSD-tier: Ameliorates flash wear-out (early gen. SSDs)

¡ All-SSD:
– Expectation of high & consistent performance: CPU is the bottleneck
– Disk bandwidth & wear-out is less of a concern (modern gen. SSDs)
– CSC improves write chain lengths, but without op latency improvement
– Pure random overwrites: op latency regresses (0.7ms à 1.3ms)

9



File Layout Defragmentation

¡ Re-dirtying file blocks can trivially fix contiguity in P space
– But that impacts efficiency of diff’ing-snapshots of the FlexVol

¡ Special fake-dirty that retains its V
– Diff’ing of snapshots finds V unchanged
– Stale P handled by consulting the container

¡ Performance: pre-fragmented data
– All-HDD: results in lower latency, higher throughput
– All-SSD:

¡ Beneficial for pure read workloads
¡ But, op latency increases with read/write op mix (1.7ms à 2.5ms)

10



Sub-block Compaction in WAFL
¡ Tail-end of files & of 

compression groups
¡ Compacted into leaves of 

the container file
¡ Benefits:

– No fixed sizes for sub-
blocks; potential for 
workload-aware 
compaction

– Compaction-related 
metadata overhead 
proportional to savings

– Crunching/re-compaction 
of FlexVol snapshots

11

P1

V3

File A

Container File for FlexVol

P1

3

3

… …Initial:

Current:

RefCount Metafile

… …

V1 len offset

V2 len offset

V3 len offset

(empty space)

Compacted Block P1

(block of B)

(2nd block of A)

(1st block of A)

V2P1V1 P1

File B

V3

FlexVol

P1P1P1

V1 V2



Re-Compaction

¡ Background scan recovers wasted fragments
¡ Walks container file

– Compares refi with refcurr per P; if worth re-compacting…
– …each fragment loaded as a dirty container leaf
– Re-compacted (moved) by next CP

¡ Same handling of stale cached P
¡ Future work: 

– Make re-compaction less intrusive 
– Make re-compaction autonomous

12



Conclusion
¡ Fourth form of fragmentation

– WAFL aggregate can include (on-prem/remote) object tier

– Cold blocks packaged into large objects

– Objects can get fragmented; defragmentation based on cost-metrics

¡ Defragmentation techniques help in all-HDD or mixed-media systems
– All-SSD systems are sensitive to CPU consumption

– Ideally, defragmentation should be autonomous and based on system load

¡ Customer data show

– All-SSD systems have sufficient CPU headroom

– Autonomous defragmentation is feasible

– Consistent & predictable performance

13


