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Reference counting

⚫ It is

○ a general technique to manage the number of references for resources

○ mainly used to reclaim resources in timely manner

⚫ Scalability is the most important challenge in multicore environment
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1. REF (increase counter)

2. Use resource

3. UNREF (decrease counter)
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Known scalability issues of reference counting in Linux

Read throughput for a same page in a single file

(Min et al. ATC’16)

Traditional Counting in Linux

CAS(counter,v,v+1)

CAS(counter,v,v-1)

Increment:

Decrement:

Thread CounterAtomic counter
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⚫ Counting Overhead

○ Cost for updating a reference counter

⚫ Query Overhead

○ Cost for checking if a reference 

counter is zero

⚫ Space Overhead

○ Space required for reference counter 

itself

⚫ Time Overhead

○ Time for synchronizing between 

internal structures for reference 

counting

Four performance metrics we established
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Overhead analysis of prior proposals

✅ Low space overhead

Traditional Counting

❌ High counting overhead

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

✅ Low query overhead

✅ Low time overhead

Reference

Thread CounterAtomic counter
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Overhead analysis of prior proposals (cont.)

Contention Distribution

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead
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Overhead analysis of prior proposals (cont.)

Contention Distribution

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

SNZI (Ellen et al., SOSP’07)

Carrefour (Dashti et al., SIGPLAN Notices (2013))

Doppel (Nurula et al., OSDI’14)

Dynamic SNZI (Acar et al., PPoPP’17)

Reference

Thread CounterAtomic counter

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead
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Overhead analysis of prior proposals (cont.)

Cache Affinity

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead
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Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

percpu_counter structure in Linux (2006)

Sloppy counter (Boyd-Wickizer et al., OSDI’10)

percpu_ref structure in Linux (2013)

Cache Affinity

Reference

core core core core

Thread CounterAtomic counter

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead
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Overhead analysis of prior proposals (cont.)

❌ Worse query overhead

❌ Worse time overhead

✅ Better counting overhead
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Per-core Hash
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Reference
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Thread CounterAtomic counter
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Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

Reference counting using Linux RCU (Mckenny et al., TR (2013))

RadixVM (Clements et al., EuroSys’13)

OpLog (Boyd-Wickizer, PhD thesis (2014))

ScaleFS (Bhat et al., SOSP’17)

Per-core Hash

❌ Worse query overhead

❌ Worse time overhead

✅ Better counting overhead
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Obj DObj CObj B
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Overhead analysis of prior proposals (cont.)
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Overhead analysis of prior proposals (cont.)
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Overhead analysis of prior proposals (cont.)

Per-core Hash (RefCache)
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Summarizing all these ...
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Summarizing all these ...



Obj A Obj B Obj C Obj D Obj E Obj F Obj G Obj H
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Challenges for the space-time tradeoff
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Challenges for the space-time tradeoff (cont.)

Obj A Obj B Obj C Obj D Obj E Obj F Obj G Obj H
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Our solution to this issue ...

corecore

Obj A

Central

counter

0

Obj A +10

REF A UNREF A

Anchoring

Core 0
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Our solution to this issue ...

core

Obj A +1

PayGo

Pay Migration Tax to Homeland

-1

Non-

atomic Atomic

Obj A

Central

counter

0

REF A

Local Anchor

Core 0
UNREF A core
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Issue for a single local counter

core 0

core 1

core 2 migrate

migrate

: lock;subl (atomic op.)

: lock;addl (atomic op.): local counter

core 3

1➞20➞1

1➞00➞1

2➞1
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Anchoring in action

core 0

core 1

core 2 migrate

migrate

: addl/subl: local counter /

core 3

0➞1

0

1➞0

0

0➞1

0

1➞2

0

2➞3

0➞−2

: anchor counter : lock;subl (atomic op.)



Paygo

(Pay migration tax as you go to other core)

⚫ Low counting overhead

○ Scalable for local counters

⚫ Low space overhead (per core hash)

○ Proportional to the number of CPU cores

⚫ Query overhead is still high

○ Escaping the counting-query tradeoff is beyond the scope of this work.
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Overhead Analysis for a Reference Counter
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⚫ Local counter increases the local 

count by REF operation

⚫ A process records core IDs along 

with object pointer when REF 

operation is performed

Data structures in PayGo

core corePAYGO

object local

PAYGO entry

cache line size (byte)

task struct

anchor info

(per-process)

(per-core)

63      56 55      52 51      48 47       0

pointer
anchor

anchor core IDs

counter counter
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Extending PayGo design to support user-level objects

user threads

sys_ref(void* obj) or sys_unref(void* obj)

user mode

kernel mode

object

preempt_disable() preempt_enable()

referencing or unreferencing

REF(obj, pid)
UNREF(obj, pid)
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Experimental Setup

Kernel: Linux 4.12.5

CPU: four 24-core Intel Xeon E7-8890 v4 CPUs

RAM: 1 TiB DDR4 DRAM

Storage: Samsung SM1725 NVMe SSD
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Scalability Comparison of the Linux Page Cache

Strongly contending workloads: FxMark DRBH workload

Weakly contending workloads: filebench modified fileserver workload
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Performance Spectrum on Varying Contention Levels
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Scalability of User-level Paygo

(at 96 threads)



Conclusion

⚫ Designing scalable reference counting techniques should consider

space-time tradeoff as well as counting-query tradeoff.

⚫ PayGo escapes the space-time tradeoff by using anchoring 

technique.

⚫ PayGo provides scalable counting and space efficiency with 

negligible time delay for reclaiming obsolete hash entries.
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