
Pay Migration Tax to Homeland:

Anchor-based Scalable

Reference Counting for Multicores

Seokyong Jung, Jongbin Kim, Minsoo Ryu,

Sooyong Kang, Hyungsoo Jung

Hanyang University

1

Reference counting

⚫ It is

○ a general technique to manage the number of references for resources

○ mainly used to reclaim resources in timely manner

⚫ Scalability is the most important challenge in multicore environment

2

1. REF (increase counter)

2. Use resource

3. UNREF (decrease counter)

3

Known scalability issues of reference counting in Linux

Read throughput for a same page in a single file

(Min et al. ATC’16)

Traditional Counting in Linux

CAS(counter,v,v+1)

CAS(counter,v,v-1)

Increment:

Decrement:

Thread CounterAtomic counter

4

⚫ Counting Overhead

○ Cost for updating a reference counter

⚫ Query Overhead

○ Cost for checking if a reference

counter is zero

⚫ Space Overhead

○ Space required for reference counter

itself

⚫ Time Overhead

○ Time for synchronizing between

internal structures for reference

counting

Four performance metrics we established

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

Ideal

5

Overhead analysis of prior proposals

✅ Low space overhead

Traditional Counting

❌ High counting overhead

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

✅ Low query overhead

✅ Low time overhead

Reference

Thread CounterAtomic counter

6

Overhead analysis of prior proposals (cont.)

Contention Distribution

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

Reference

Thread CounterAtomic counter

7

Overhead analysis of prior proposals (cont.)

Contention Distribution

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

SNZI (Ellen et al., SOSP’07)

Carrefour (Dashti et al., SIGPLAN Notices (2013))

Doppel (Nurula et al., OSDI’14)

Dynamic SNZI (Acar et al., PPoPP’17)

Reference

Thread CounterAtomic counter

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead

8

Overhead analysis of prior proposals (cont.)

Cache Affinity

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

Reference

core core core core

Thread CounterAtomic counter

9

Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

percpu_counter structure in Linux (2006)

Sloppy counter (Boyd-Wickizer et al., OSDI’10)

percpu_ref structure in Linux (2013)

Cache Affinity

Reference

core core core core

Thread CounterAtomic counter

❌ Worse space overhead

✅ Better counting overhead

❌ Worse query overhead

10

Overhead analysis of prior proposals (cont.)

❌ Worse query overhead

❌ Worse time overhead

✅ Better counting overhead

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

Per-core Hash

Obj A

Obj C

Obj A

Obj B

Reference

core core core core

Thread CounterAtomic counter

Obj A

Central

counter

Obj B

Central

counter

Obj C

Central

counter

11

Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead
Prior proposals:

Reference counting using Linux RCU (Mckenny et al., TR (2013))

RadixVM (Clements et al., EuroSys’13)

OpLog (Boyd-Wickizer, PhD thesis (2014))

ScaleFS (Bhat et al., SOSP’17)

Per-core Hash

❌ Worse query overhead

❌ Worse time overhead

✅ Better counting overhead

Obj A

Obj C

Obj A

Obj B

Reference

core core core core

Thread CounterAtomic counter

Obj A

Central

counter

Obj B

Central

counter

Obj C

Central

counter

Obj DObj CObj B

12

Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

core

Obj A

Central

counter

0

Obj A +1

Per-core Hash

Obj B +1

Obj C +1

Obj D +1

Obj X

Central

counter

0

...

Obj X +1

1

...
Evict

13

Overhead analysis of prior proposals (cont.)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

Obj DObj CObj B

core

Obj A

Central

counter

0

Per-core Hash

Obj B +1

Obj C +1

Obj D +1

Obj X

Central

counter

0

...

Obj X +1

1

...

14

Overhead analysis of prior proposals (cont.)

Per-core Hash (RefCache)

Space

overhead

Counting

overhead

Query

overhead

Time

overhead

0

100

200

300

400

256 1024 4096 16384T
h
ro

u
g
h
p
u
t

(M
o

p
s
/s

e
c
)

Number of Shared Objects (Pages)

15

Summarizing all these ...

16

Summarizing all these ...

Obj A Obj B Obj C Obj D Obj E Obj F Obj G Obj H

17

Challenges for the space-time tradeoff

core

Per-core Hash

corecore core

Cache Affinity

Obj H

Obj G

Obj F

Obj E

Obj D

Obj C

Obj B

Obj A

Central

counter

0

18

Challenges for the space-time tradeoff (cont.)

Obj A Obj B Obj C Obj D Obj E Obj F Obj G Obj H

core

Obj A +1

core

Obj A -1

Central

counter

0

19

Our solution to this issue ...

corecore

Obj A

Central

counter

0

Obj A +10

REF A UNREF A

Anchoring

Core 0

20

Our solution to this issue ...

core

Obj A +1

PayGo

Pay Migration Tax to Homeland

-1

Non-

atomic Atomic

Obj A

Central

counter

0

REF A

Local Anchor

Core 0
UNREF A core

21

Issue for a single local counter

core 0

core 1

core 2 migrate

migrate

: lock;subl (atomic op.)

: lock;addl (atomic op.): local counter

core 3

1➞20➞1

1➞00➞1

2➞1

22

Anchoring in action

core 0

core 1

core 2 migrate

migrate

: addl/subl: local counter /

core 3

0➞1

0

1➞0

0

0➞1

0

1➞2

0

2➞3

0➞−2

: anchor counter : lock;subl (atomic op.)

Paygo

(Pay migration tax as you go to other core)

⚫ Low counting overhead

○ Scalable for local counters

⚫ Low space overhead (per core hash)

○ Proportional to the number of CPU cores

⚫ Query overhead is still high

○ Escaping the counting-query tradeoff is beyond the scope of this work.

23

24

Overhead Analysis for a Reference Counter

25

⚫ Local counter increases the local

count by REF operation

⚫ A process records core IDs along

with object pointer when REF

operation is performed

Data structures in PayGo

core corePAYGO

object local

PAYGO entry

cache line size (byte)

task struct

anchor info

(per-process)

(per-core)

63 56 55 52 51 48 47 0

pointer
anchor

anchor core IDs

counter counter

26

Extending PayGo design to support user-level objects

user threads

sys_ref(void* obj) or sys_unref(void* obj)

user mode

kernel mode

object

preempt_disable() preempt_enable()

referencing or unreferencing

REF(obj, pid)
UNREF(obj, pid)

27

Experimental Setup

Kernel: Linux 4.12.5

CPU: four 24-core Intel Xeon E7-8890 v4 CPUs

RAM: 1 TiB DDR4 DRAM

Storage: Samsung SM1725 NVMe SSD

28

Scalability Comparison of the Linux Page Cache

Strongly contending workloads: FxMark DRBH workload

Weakly contending workloads: filebench modified fileserver workload

29

Performance Spectrum on Varying Contention Levels

30

Scalability of User-level Paygo

(at 96 threads)

Conclusion

⚫ Designing scalable reference counting techniques should consider

space-time tradeoff as well as counting-query tradeoff.

⚫ PayGo escapes the space-time tradeoff by using anchoring

technique.

⚫ PayGo provides scalable counting and space efficiency with

negligible time delay for reclaiming obsolete hash entries.

31

