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Graph Processing is Commonplace
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Map and 

Navigation
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Large-Scale Graph Processing Challenges

Huge Datasets Irregular Accesses

External Graph Processing is 
Desirable

5

High cost of DRAM

$$$$

NVMe SSD
Fine-Grained and Random 
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$
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Fine-Grained Access in External Graph Processing

5

SSD Page Size and Vertex 
Accesses Don’t Match!

SSD Page 0 SSD Page 1

SSD Page

Several KiloBytes
(4KB ~ 16KB) Several Bytes, 

e.g., 4Bytes

Vertex Value

Irregular Accesses



Fine-Grained Access in External Graph Processing
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SSD Page Size and Vertex 
Accesses Don’t Match!

SSD Page 0 SSD Page 1

SSD Page

Several KiloBytes
(4KB ~ 16KB)

Vertex updates are 
detrimental to:

Performance Device Endurance

Several Bytes, 
e.g., 4Bytes

Vertex Value

Irregular Accesses



Providing Perfect Sequentiality as a Remedy
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• If vertex data could be stored on DRAM
• Fine-grained accesses was less of an issue

GraFBoost, ISCA’18Instead, prior external graph processing 
framework maintains vertex data on SSD



Providing Perfect Sequentiality as a Remedy
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• If vertex data could be stored on DRAM
• Fine-grained accesses was less of an issue

GraFBoost, ISCA’18Instead, prior external graph processing 
framework maintains vertex data on SSD

Achieves perfect sequentiality by 
coalescing fine-grained accesses



Programming Model
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Vertex-centric Programming Model

- Iterative programming model

- Each vertex runs a user-defined program

- Sending updates to neighbors along outgoing edges

A



Prior External Graph Processing -- GraFBoost
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Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.



Prior External Graph Processing -- GraFBoost
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V0 → Vx

V0 → Vy

V0 → Vz

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.



Prior External Graph Processing -- GraFBoost
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Keys: {Vx , Vy , Vz}, Value: {V0 value}

<Vx,V0 value>, <Vy,V0 value>, <Vz,V0 value> 

V0 → Vx

V0 → Vy

V0 → Vz

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.



Prior External Graph Processing -- GraFBoost
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Keys: {Vx , Vy , Vz}, Value: {V0 value}

<Vx,V0 value>, <Vy,V0 value>, <Vz,V0 value> 

V0 → Vx

V0 → Vy

V0 → Vz
GraFBoost sorts key-value 
pairs in memory, logs them 
in SSD, merges them, and 
updates vertex list in SSD

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.



Computation Overhead of Sort!
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• Up to 60% sort overhead (web graph)

• Higher sort overhead for PageRank
- Processes all vertices in each iteration and generates more updates



Current External Graph Processing: 

Read from SSD            Sort in Memory        Write to SSD

Linear Time O(|E|)          |E|*log(|E|)           Linear Time O(|E|)

Scalability Issue
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When k < log(|E|) → Sorting can 
become bottleneck
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When k < log(|E|) → Sorting can 
become bottleneck

Instead, we propose a vertex 
partitioning to eliminate the sorting



Extensive Prior Efforts on Partitioning Graph Data:

- Not well suited for fully external graph processing

Partitioning Graph Data
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Require all vertices be present in main memory

Do not decouple vertices and edges

FlashGraph, FAST’15 
GraphChi, OSDI’12, 
Mosaic, EuroSys’17

PowerGraph, OSDI’12
GridGraph, USENIX ATC’15

GraphP, HPCA’18

Need each partition be 
completely present in 

cache or memory

Dramatically increasing number of 
partitions and incurring high cross-

partition communication



Reorganizing graph data so that vertices associated with each 
partition can fit in main memory

Instead, We Propose a Partitioning for Vertex Data
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In each iteration:

Execution Flow
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In each iteration:
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How to Update Vertex List 
in Main Memory?



Multiple threads are updating elements of the same vertex list
- High synchronization cost

Updating Vertices in Memory
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Vertex List



Multiple threads are updating elements of the same vertex list
- High synchronization cost

Updating Vertices in Memory
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Vertex List

Buffer, 

e.g., 1MB



Required Meta-Data for Mirror Updates

Updating Vertex Mirrors on Different Partitions
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O(|V|) running time for updating mirrors
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Experimental Setup

• Processor: Intel Xeon -- 48 Cores

• Memory: DRAM – 256 GB

• SSD: Two Samsung NVMe SSDs 
- 3.2 TB capacity in total, and 6.4 GB/s Sequential Read Speed

• Graph Algorithms: 
- PageRank and Breadth-First-Search (BFS)

• Input Graphs:
- Web, Twitter, Synthetic (Kron)
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Performance Evaluation
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• More than 2X Improvement Compared to GrafSoft

• Providing Higher Benefits for larger graphs (Web, Kron32)

• Incurring around 10% space overhead for partitioning



Execution Time Breakdown
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• Mirror updates account for 8-12% of execution time

• I/O does not remain the main contributor to the total execution time

PageRank



Concluding Remarks

• Large-scale graph processing suffers from random updates to 
vertices

• State-of-the-art provides perfect sequentiality by sorting all 
updates

- High computation overhead

• A partitioning for vertex data is proposed to eliminate the need 
for perfect sequentiality

• In Future: Addressing timely evolving graphs

• Thanks to GraFboost authors (Sang-Woo Jun) !
34



Thanks!
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