
Large-Scale Graph Processing on Emerging
Storage Devices

Nima Elyasi1, Changho Choi2, Anand Sivasubramaniam1

1Pennsylvania State University

2Samsung Semiconductor Inc.

Graph Processing is Commonplace

2

Search Engines Social Media
Recommendations

and Ads
Map and

Navigation

Large-Scale Graph Processing Challenges

Huge Datasets Irregular Accesses

5

High cost of DRAM

$$$$

DRAM

Large-Scale Graph Processing Challenges

Huge Datasets Irregular Accesses

External Graph Processing is
Desirable

5

High cost of DRAM

$$$$

NVMe SSD

$

DRAM

Large-Scale Graph Processing Challenges

Huge Datasets Irregular Accesses

External Graph Processing is
Desirable

5

High cost of DRAM

$$$$

NVMe SSD

$

DRAM

Large-Scale Graph Processing Challenges

Huge Datasets Irregular Accesses

External Graph Processing is
Desirable

5

High cost of DRAM

$$$$

NVMe SSD
Fine-Grained and Random

Accesses

$

DRAM

Fine-Grained Access in External Graph Processing

5

SSD Page Size and Vertex
Accesses Don’t Match!

SSD Page 0 SSD Page 1

SSD Page

Several KiloBytes
(4KB ~ 16KB) Several Bytes,

e.g., 4Bytes

Vertex Value

Irregular Accesses

Fine-Grained Access in External Graph Processing

5

SSD Page Size and Vertex
Accesses Don’t Match!

SSD Page 0 SSD Page 1

SSD Page

Several KiloBytes
(4KB ~ 16KB)

Vertex updates are
detrimental to:

Performance Device Endurance

Several Bytes,
e.g., 4Bytes

Vertex Value

Irregular Accesses

Providing Perfect Sequentiality as a Remedy

9

• If vertex data could be stored on DRAM
• Fine-grained accesses was less of an issue

GraFBoost, ISCA’18Instead, prior external graph processing
framework maintains vertex data on SSD

Providing Perfect Sequentiality as a Remedy

10

• If vertex data could be stored on DRAM
• Fine-grained accesses was less of an issue

GraFBoost, ISCA’18Instead, prior external graph processing
framework maintains vertex data on SSD

Achieves perfect sequentiality by
coalescing fine-grained accesses

Programming Model

5

Vertex-centric Programming Model

- Iterative programming model

- Each vertex runs a user-defined program

- Sending updates to neighbors along outgoing edges

A

Prior External Graph Processing -- GraFBoost

12

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.

Prior External Graph Processing -- GraFBoost

13

V0 → Vx

V0 → Vy

V0 → Vz

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.

Prior External Graph Processing -- GraFBoost

14

Keys: {Vx , Vy , Vz}, Value: {V0 value}

<Vx,V0 value>, <Vy,V0 value>, <Vz,V0 value>

V0 → Vx

V0 → Vy

V0 → Vz

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.

Prior External Graph Processing -- GraFBoost

15

Keys: {Vx , Vy , Vz}, Value: {V0 value}

<Vx,V0 value>, <Vy,V0 value>, <Vz,V0 value>

V0 → Vx

V0 → Vy

V0 → Vz
GraFBoost sorts key-value
pairs in memory, logs them
in SSD, merges them, and
updates vertex list in SSD

Vertex Data Index File

Edge File

Sang-Woo Jun, et al. Grafboost: Using accelerated flash storage for external graph analytics, ISCA’18.

Computation Overhead of Sort!

16

• Up to 60% sort overhead (web graph)

• Higher sort overhead for PageRank
- Processes all vertices in each iteration and generates more updates

Current External Graph Processing:

Read from SSD Sort in Memory Write to SSD

Linear Time O(|E|) |E|*log(|E|) Linear Time O(|E|)

Scalability Issue

17

Current External Graph Processing:

Read from SSD Sort in Memory Write to SSD

Linear Time O(|E|) |E|*log(|E|) Linear Time O(|E|)

Assuming DRAM “k” times faster than SSD (e.g., k=30):

Scalability Issue

18

When k < log(|E|) → Sorting can
become bottleneck

Current External Graph Processing:

Read from SSD Sort in Memory Write to SSD

Linear Time O(|E|) |E|*log(|E|) Linear Time O(|E|)

Assuming DRAM “k” times faster than SSD (e.g., k=30):

Scalability Issue

19

When k < log(|E|) → Sorting can
become bottleneck

Current External Graph Processing:

Read from SSD Sort in Memory Write to SSD

Linear Time O(|E|) |E|*log(|E|) Linear Time O(|E|)

Assuming DRAM “k” times faster than SSD (e.g., k=30):

Scalability Issue

20

When k < log(|E|) → Sorting can
become bottleneck

Instead, we propose a vertex
partitioning to eliminate the sorting

Extensive Prior Efforts on Partitioning Graph Data:

- Not well suited for fully external graph processing

Partitioning Graph Data

21

Require all vertices be present in main memory

Do not decouple vertices and edges

FlashGraph, FAST’15
GraphChi, OSDI’12,
Mosaic, EuroSys’17

PowerGraph, OSDI’12
GridGraph, USENIX ATC’15

GraphP, HPCA’18

Need each partition be
completely present in

cache or memory

Dramatically increasing number of
partitions and incurring high cross-

partition communication

Reorganizing graph data so that vertices associated with each
partition can fit in main memory

Instead, We Propose a Partitioning for Vertex Data

22

Source
Vertices

Destination
Vertices

Reorganizing graph data so that vertices associated with each
partition can fit in main memory

Instead, We Propose a Partitioning for Vertex Data

23

S
o
u

rc
e
 V

er
te

x
 D

a
ta

Vertex ID &

Value
Index

Vertex A Offset A

Vertex B Offset B

Vertex C Offset C

Partition 0

S
o

rted
 B

a
sed

 o
n

 V
ertex

 ID

Edge Data

Vertex A

Out-edge

Vertex A

Out-edge

Vertex B

Out-edge

Vertex C

Out-edge

Source
Vertices

Destination
Vertices

In each iteration:

Execution Flow

24

SSD

Vertex Data

Destination

Vertex for a

partition

Memory

In each iteration:

Execution Flow

25

S
o
u

rc
e
 V

er
te

x
 D

a
ta

Vertex ID &

Value
Index

Vertex A Offset A

Vertex B Offset B

Vertex C Offset C

Partition 0

SSD

Vertex Data

Destination

Vertex for a

partition

A Chunk

of Source

Vertex

(32MB)

Update Destination

Vertices

Reading

Neighboring

Information

Memory Memory

S
tre

a
m

in
g
 F

ro
m

 S
S

D

In each iteration:

Execution Flow

26

S
o
u

rc
e
 V

er
te

x
 D

a
ta

Vertex ID &

Value
Index

Vertex A Offset A

Vertex B Offset B

Vertex C Offset C

Partition 0

SSD

Vertex Data

Destination

Vertex for a

partition

A Chunk

of Source

Vertex

(32MB)

Write all

updated

vertex data

on SSD

Update Destination

Vertices

Reading

Neighboring

Information

Generate Mirror Updates

for other partitions

Meta-

data for

current

partition

Memory Memory Memory

S
tre

a
m

in
g
 F

ro
m

 S
S

D

In each iteration:

Execution Flow

27

S
o
u

rc
e
 V

er
te

x
 D

a
ta

Vertex ID &

Value
Index

Vertex A Offset A

Vertex B Offset B

Vertex C Offset C

Partition 0

SSD

Vertex Data

Destination

Vertex for a

partition

A Chunk

of Source

Vertex

(32MB)

Write all

updated

vertex data

on SSD

Update Destination

Vertices

Reading

Neighboring

Information

Generate Mirror Updates

for other partitions

Meta-

data for

current

partition

Memory Memory Memory

S
tre

a
m

in
g
 F

ro
m

 S
S

D

How to Update Vertex List
in Main Memory?

Multiple threads are updating elements of the same vertex list
- High synchronization cost

Updating Vertices in Memory

28

Vertex List

Multiple threads are updating elements of the same vertex list
- High synchronization cost

Updating Vertices in Memory

29

Vertex List

Buffer,

e.g., 1MB

Required Meta-Data for Mirror Updates

Updating Vertex Mirrors on Different Partitions

30
O(|V|) running time for updating mirrors

Vertex Value

Partition i

Mirrors for

Partition 0

Source Vertex Table

Vertex 0

Part ID(s)

Vertex 1

Part ID(s)

Vertex 2

Part ID(s)

Partition 0

Start Index

End Index

Partition i

Start Index

End Index

For each

partition

Metadata

For each

Vertex
Start Index

End Index

Experimental Setup

• Processor: Intel Xeon -- 48 Cores

• Memory: DRAM – 256 GB

• SSD: Two Samsung NVMe SSDs
- 3.2 TB capacity in total, and 6.4 GB/s Sequential Read Speed

• Graph Algorithms:
- PageRank and Breadth-First-Search (BFS)

• Input Graphs:
- Web, Twitter, Synthetic (Kron)

31

Performance Evaluation

32

• More than 2X Improvement Compared to GrafSoft

• Providing Higher Benefits for larger graphs (Web, Kron32)

• Incurring around 10% space overhead for partitioning

Execution Time Breakdown

33

• Mirror updates account for 8-12% of execution time

• I/O does not remain the main contributor to the total execution time

PageRank

Concluding Remarks

• Large-scale graph processing suffers from random updates to
vertices

• State-of-the-art provides perfect sequentiality by sorting all
updates

- High computation overhead

• A partitioning for vertex data is proposed to eliminate the need
for perfect sequentiality

• In Future: Addressing timely evolving graphs

• Thanks to GraFboost authors (Sang-Woo Jun) !
34

Thanks!

35

