
Stash in a Flash

Aviad Zuck, Yue li, Shuki Bruck,
Donald E. Porter, Dan Tsafrir

Outline

• Motivation
• Background
• How to hide
• Detectability
• Performance
• Conclusion

Context

• This paper is about hiding data with plausible
deniability in flash memories

• Encryption denies access to private data
• Our goal: adversary cant tell if system is even

hiding data

3

Motivation

• Human rights activist crossing a border in a
country ruled by a dictatorship

• User device carries sensitive data
• Intelligence officer at border checkpoint

inspects device
• Can confiscate device, and demand encryption

key!
– May be resolved with plausible deniability

4

Our contribution (in context)

• New data hiding technique in flash
• Going against a potent adversary (e.g.,

government) is extremely challenging
• This paper: a building block towards complete

solution
– Some pieces solved by others
– Some pieces open problems

5

Outline

• Motivation
• Background
• How to hide
• Detectability
• Performance
• Conclusion

Storing a single bit in flash

7

01

Storing multiple bits in flash

• Page is the read/write unit
• Block is the erase unit

Block
(1-4MB)

page (4-16KB)

0 1 1 0 0 0 1 1 1 0 1 0 1 1

Histogram of bits in a flash chip

V

SLC programming

0n
um

be
r

of
 c

e
ll s

1

V

nu
m

be
r

of
 c

el
l s MLC programming

0111 00 10

threshold voltage

Voltage

Voltage

Programming a cell

10

01

Voltage

• Flash hardware logic internally applies multiple charging pulses

Programming is imprecise (1)

V

SLC programming

0n
um

be
r

of
 c

e
ll s

1

single logical state

buffer zone

target
threshold

Voltage

Programming is imprecise (2)
• Variations exist at all levels:

– Flash chips of same vendor and model
– Different areas in chip
– Different blocks/pages in same area

0

1

1

2

2

3

3

4

120 130 140 150 160 170 180 190 200 210

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

‘0’

pages

Interference increases variations

• Programming a cell partially charges
neighboring cells
– 20% of non-programmed cells positively charged

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

‘1’

pages

Wear-out adds more variations

• Cell degradation right-shifts distributions as
more Program/Erase Cycles (PEC) applied

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 b
lo

ck

Normalized voltage level

PEC 0 PEC 1000 PEC 2000 PEC 3000

older
cells

‘1’

Outline

• Motivation
• Background
• How to hide
• Detectability
• Performance
• Conclusion

Threat model

• User has “public” + secret key
– Encrypts public data using “public” key
– Secret key for hidden data w/plausible deniability!

• Adversary (e.g., NSA):
– Confiscate device for inspection
– Can probe visible data and voltage levels*

* Requires NDA with vendors

Storing a hidden bit in flash

‘0’‘1’

Voltage-hide method
I. Store public data using coarse-grain programming

Where to hide

K = secret key, n bits to hide
• PRNG initialized with secret key K
• Draw n random offsets in public

‘1’/’0’ bits of page

PRNG

p
a
g
e

.

n random
numbers

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘0’

How to hide
Voltage-hide method

I. Store public data using coarse-grain programming
II. Select cells to store extra hidden bits (PRNG + secret key)
III. Store hidden data using fine-grain programming

V

‘01’

‘0’

‘00’

‘1’

hidden bit
threshold voltage

‘0’

How to hide

V

‘01’

‘0’

‘00’

‘1’

hidden bit
threshold voltage

Voltage-hide method
I. Store public data using coarse-grain programming
II. Select cells to store extra hidden bits (PRNG + secret key)
III. Store hidden data using fine-grain programming

• Vendors can tweak programming accuracy on the chip!
– Voltage-level distribution width
– Target voltage
– Threshold voltage

• Flash vendors: Control over low level features

• Us: Improvise by (very) crudely mimicking
fine-grain programming

21

How to hide (cont.)

• Sequence of Partial-Programming (PP) steps (PROGRAM+ABORT)
• Hiding in programmed cells too slow & inaccurate
 focus on non-programmed cells

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70

%
 o

f c
e

lls
 in

 b
lo

ck

Normalized voltage level

normal '1'

hidden '1' hidden '0'

• Vendors can implement our scheme in
firmware

• We are not flash vendors
• We present an implementation on real

hardware
– Required vendor-specific voltage probing
– Some limitations from inability to change firmware

23

Determining capacity

• Small number of non-
programmed cells to
manipulate (<1K)
 hide only 256 bits

per page
• Inherent limitation of

not having vendor
support

right
shift

Outline

• Motivation
• Background
• How to hide
• Detectability
• Performance
• Conclusion

Basic idea

• Flash blocks with hidden data can be mistaken
for “normal” blocks with similar age

• Voltage variations mistaken for naturally
occurring ones (e.g., age, process variation)

Simulating adversary

• Apply Support Vector Machine (SVM) to
voltage data

• Three chips with mix of public & hidden data
– Train: two chips, know which pages have hidden

data
– Classify: 3rd chip: given voltages, has hidden data?

• Hidden and public data PEC vary
– e.g., normal PEC 1000, hidden PEC 2000
– Optimal for adversary!

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Normal data PEC

0 PEC 1000 PEC 2000 PEC

random
guess

Blocks w/hidden data

• Works when hidden and normal data PEC are close enough

Outline

• Motivation
• Background
• How to hide
• Detectability
• Performance
• Conclusion

Metric Our method State of the art* Why?

Encoding thr. 35 Kb/s 1.4 Kb/s Fewer programming steps
(10 vs. hundreds)Latency (single bit) 6.9 ms 798 ms

Energy 1,183 uJ 43,624 uJ

Decoding thr. 2.7 Mb/s 54 Kb/s Single read vs. dozens of
programming steps
 Reduced wear out!

* “Hiding information in flash memory”, IEEE Symposium on Security and Privacy (SP) 2013

Reliability and retention

31

• Emulate different retention periods using
standard techniques*
– Bake flash chip in special oven

* Extended arrhenius law of time-to-breakdown of ultrathin gate oxides, APL’03

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 B
E

R
PEC 0 PEC 1000 PEC 2000

1 day 1 month 4 months

VT-HI normal VT-HI normal VT-HI normal

Reliability and retention (cont.)

normalized
to zero time

fresh cells
retention  aged cells

retention 

fresh cells
retention 

aged cells
retention 

• Over time need stronger ECC/refresh

Reliability and retention (cont.)

• State of the art:
– Similar BER for fresh cells

(0.3% vs. 0.5% in VT-HI)
– Unacceptable BER even for slightly aged cells

(e.g., 12% BER for PEC 100)

Capacity

• So far mimicked fine-grain programming
– Incremental PP
– Bits per page: 256 vs. 1024 for state of the art 

• Lets simulate “what if” we had vendor
support?
– 10 PP  1 PP
– 256 bits x 10 2560 bits

How does hiding 10x more
bits affect detectability?

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Normal data PEC

PEC 0 PEC 1000 PEC 2000

random
guess1. Slightly more detectable

2. Interference from PP doubles public data
BER 

Vendor support (cont.)

36

• Problems should be resolved with vendor support:
- Less interference, more accuracy
- Can hide in programmed cells!

Low-capacity & suboptimal High-capacity, Efficient &
accurate

Conclusions

• We can hide data within natural voltage
variations
– Already common to increase flash densities

• Vs. State of art:
– 24x and 50x faster encoding/decoding,
– 37x more power efficient, and
– less wear

• Capacity should improve with vendor support

Questions?

