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Context

• This paper is about hiding data with plausible 
deniability in flash memories

• Encryption denies access to private data
• Our goal: adversary cant tell if system is even 

hiding data
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Motivation

• Human rights activist crossing a border in a 
country ruled by a dictatorship

• User device carries sensitive data
• Intelligence officer at border checkpoint 

inspects device
• Can confiscate device, and demand encryption 

key!
– May be resolved with plausible deniability
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Our contribution (in context)

• New data hiding technique in flash
• Going against a potent adversary (e.g., 

government) is extremely challenging
• This paper: a building block towards complete 

solution
– Some pieces solved by others 
– Some pieces open problems
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Storing a single bit in flash
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Storing multiple bits in flash

• Page is the read/write unit
• Block is the erase unit

Block
(1-4MB)

page (4-16KB)

0 1 1 0 0 0 1 1 1 0 1 0 1 1



Histogram of bits in a flash chip
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SLC programming

0n
um

be
r 

of
 c

e
ll s

1

V

nu
m

be
r 

of
 c

el
l s MLC programming

0111 00 10

threshold voltage

Voltage

Voltage



Programming a cell
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Voltage

• Flash hardware logic internally applies multiple charging pulses



Programming is imprecise (1)
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Programming is imprecise (2)
• Variations exist at all levels:

– Flash chips of same vendor and model
– Different areas in chip
– Different blocks/pages in same area
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Interference increases variations

• Programming a cell partially charges 
neighboring cells 
– 20% of non-programmed cells positively charged
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Wear-out adds more variations

• Cell degradation right-shifts distributions as 
more Program/Erase Cycles (PEC) applied
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Threat model

• User has “public” + secret key
– Encrypts public data using “public” key
– Secret key for hidden data w/plausible deniability!

• Adversary (e.g., NSA):
– Confiscate device for inspection
– Can probe visible data and voltage levels*

* Requires NDA with vendors



Storing a hidden bit in flash

‘0’‘1’

Voltage-hide method
I. Store public data using coarse-grain programming



Where to hide

K = secret key, n bits to hide
• PRNG initialized with secret key K
• Draw n random offsets in public 

‘1’/’0’ bits of page
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‘0’

How to hide
Voltage-hide method

I. Store public data using coarse-grain programming
II. Select cells to store extra hidden bits (PRNG + secret key)
III. Store hidden data using fine-grain programming
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‘0’

How to hide
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hidden bit 
threshold voltage

Voltage-hide method
I. Store public data using coarse-grain programming
II. Select cells to store extra hidden bits (PRNG + secret key)
III. Store hidden data using fine-grain programming 

• Vendors can tweak programming accuracy on the chip!
– Voltage-level distribution width
– Target voltage
– Threshold voltage



• Flash vendors: Control over low level features

• Us: Improvise by (very) crudely mimicking 
fine-grain programming
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How to hide (cont.)

• Sequence of Partial-Programming (PP) steps (PROGRAM+ABORT)
• Hiding in programmed cells too slow & inaccurate 
 focus on non-programmed cells
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• Vendors can implement our scheme in 
firmware

• We are not flash vendors
• We present an implementation on real 

hardware
– Required vendor-specific voltage probing
– Some limitations from inability to change firmware
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Determining capacity

• Small number of non-
programmed cells to 
manipulate (<1K)
 hide only 256 bits 

per page
• Inherent limitation of 

not having vendor 
support

right
shift
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Basic idea

• Flash blocks with hidden data can be mistaken 
for “normal” blocks with similar age

• Voltage variations mistaken for naturally 
occurring ones (e.g., age, process variation)



Simulating adversary

• Apply Support Vector Machine (SVM) to 
voltage data

• Three chips with mix of public & hidden data
– Train: two chips, know which pages have hidden 

data 
– Classify: 3rd chip: given voltages, has hidden data?

• Hidden and public data PEC vary
– e.g., normal PEC 1000, hidden PEC 2000
– Optimal for adversary!
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Metric Our method State of the art* Why?

Encoding thr. 35 Kb/s 1.4 Kb/s Fewer programming steps 
(10 vs. hundreds)Latency (single bit) 6.9 ms 798 ms

Energy 1,183 uJ 43,624 uJ

Decoding thr. 2.7 Mb/s 54 Kb/s Single read vs. dozens of 
programming steps 
 Reduced wear out!

* “Hiding information in flash memory”, IEEE Symposium on Security and Privacy (SP) 2013



Reliability and retention
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• Emulate different retention periods using 
standard techniques*
– Bake flash chip in special oven

* Extended arrhenius law of time-to-breakdown of ultrathin gate oxides, APL’03
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Reliability and retention (cont.)

• State of the art:
– Similar BER for fresh cells

(0.3% vs. 0.5% in VT-HI)
– Unacceptable BER even for slightly aged cells 

(e.g., 12% BER for PEC 100)



Capacity

• So far mimicked fine-grain programming 
– Incremental PP
– Bits per page: 256 vs. 1024 for state of the art 

• Lets simulate “what if” we had vendor 
support?
– 10 PP  1 PP
– 256 bits x 10 2560 bits



How does hiding 10x more 
bits affect detectability?
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Vendor support (cont.)
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• Problems should be resolved with vendor support:
- Less interference, more accuracy
- Can hide in programmed cells!

Low-capacity & suboptimal High-capacity, Efficient & 
accurate



Conclusions

• We can hide data within natural voltage 
variations
– Already common to increase flash densities

• Vs. State of art: 
– 24x and 50x faster encoding/decoding, 
– 37x more power efficient, and 
– less wear

• Capacity should improve with vendor support

Questions?


