Towards Web-based Delta Synchronization
for Cloud Storage Services

He Xiao and Zhenhua Li, Tsinghua University; Ennan Zhai, Yale University;
Tianyin Xu, UIUC; Yang Li and Yunhao Liu, Tsinghua University;
Quanlu Zhang, Microsoft Research Asia; Yao Liu, SUNY Binghamton

xiaohle@gmail.com
Fast’18 Feb 14, 2018

Network Traffic is Overwhelming in Cloud Storage

Cloud Traffic has 30% CAGR (Compound Average Growth Rate)

30% CAGR
2015-2020
Zettabytes
per Year I

2015 2016 2017 2018 2019 2020

Back to Index

(((((

Wf

- File Synchronization(Sync) |
‘ > ==

0

Network Traffic

—

=)

Client Cloud Sever

Delta Sync Improves Network Efficiency

Delta sync support in nine state-of-the-art

Full File _
cloud storage services
Service PC Client | Mobile App | Web Browser
Dropbox Yes No No
) . Google Drive No No No
New File Full Svnc Old File OneDrive No No No
y iCloud Drive No No
Box.com No No No
SugarSync Yes No No
Seafile Yes No No
10 MB Delta Data QuickSyn Yes es No
1B ‘ DeltaCFS Yes es No
New File Old File @ @
Delta Sync

Delta Sync is crucial for reducing cloud storage network traffic.

No Web-based Delta Sync

Web-based delta sync is essential for cloud storage web
clients and web apps

& OneDrive
> ff
Dropbox Google

Web is the most pervasive and OS-independent cloud storage access method

Why web-based delta sync is not supported by

today’s commercial cloud storage services ?

WebRsync: First Workable Web Delta Sync

* Implement rsync on web framework with pure web tech:
JavaScript + HTML5 + WebSocket

* Points out the Challenges of supporting delta sync on web.

JavaScript Implementation
of Rsync

WebSocket

C Implementation
of Rsync

<
<

JavaScript
HTMLS5 FileAPI

Local

File System

High-Speed
Internal Network

Storage Backend
Aliyun OSS / OpenStack Swift

WebRsync benchmarking: poor client performance

0.1
- Il server
2 0.08 - [IMNetwork ~
§ [_IClient -—= -
o | | ' ' | | (%0.06 1 M I ~40%
' S - skn S .
< | |7~"WebRsync . = 0041 | =[] I :
A e AR RN
3] i @
() i
n / 0" J
S 4 ‘ 1 10 100 1K 10K 100K
= i Rsync Append Size (Byte)
—
§ 27 _i’
.... A 8 [i ‘
U) e i e o o ¢ - o -Sewer I_ —_*—_I
0 : 2 6 Il Network I ,
1 10 100 1K 10K 100K 8° [iCient : '
Append Size (Byte)) I "
@4 : : 60-92%
. : =
Sync time of WebRsync vs Linux rsync g2 ' i
%) D ' |
ol e | -

14-25 times slower 1 10 100 1K 10K 100K

WebRsync Append Size (Byte)

StagMeter Tool

Timing tasks: Printing timestamps every 100ms:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Stagnation: single-thread is occupied by some
backend tasks

XXXXXXXX)1< ’|XXXXXXXXXXXX

Stagnation Interval

User’s operation cannot get response timely.

Measuring Stagnation with StagMeter

1. Send meta data

2. Checksum Search

3. Send tokens and literal bytes

Wait server and Comparison
~ 1001
2
S
!
= 50| | ----100
= 10K
o o T 100K
O
— 0 : : : .
@ 100K |+
® 10K
@ 100} Printed Timestamps by StagMeter
5 1k
Ay \
0 2 4 6

P

Sync Process (Second)

<

\

High CPU Utilization when

computing

Timestamp Printing is suspended
Web is under stagnation state

Why poor client : slow searching and comparing

New File Old File New File Old File
g?g?l(g Checksum ., Checksum Block 1 Block 1 Matches » Block 1
Matches ? — 1023
1024
\A Checksum | Block 2 Changes | NoMatch Block 2
] 1M
Checksum Block 3 Eloce 2050 Maiches Block 3
e Z(Mv
Block 3 Matches
Checksum Block 4 s Block 4
3105
Client Cloud Changes | No Match
4809

Bottleneck

WebR2sync: Reverse Computation Process

New file m old file

Segmentation
& fingerprinting

Searching
& Comparing

Matched Tokens

Changed Bits

i | Construct New Files

WebR2sync: Reverse Computation Process

New file m old file

Segmentation
& fingerprinting

Searching
& Comparing

Matched Tokens

Changed Bits

Construct New Files

11

Performance of WebR2sync

0! F— ' ‘
-+--\WebRsync S
------- WebR2sync rd
~& rsync #
—~ /
FO 0 f”"
8 107} - -+ —————— e - .] .
3 Sever side is 2-3 time slower
%)
 —
D]
[PP
0 10
ol
5; R W S S
107

1 10 100 1K 10K 100k
Edit Size (Byte)

Issue: Server takes severely heavy overhead.

Server-side Overhead Profiling

Checksum searching and block comparison occupy
80% of the computing time

30 40 50 60
‘ [MD5 Computing Checksum Search

| nction Duration

Wl B HH (bit-sync.js:82:28 1ms
-I} B ~<anonymous> 5.js:1:11 1ms
-. [*createMatchDocument (lazy) bit-sync.js:394:33 79ms
<anony B ~<anonymous> (lazy) app.js:118:48 79ms

.ll_..-l.-. ~<anonymous> (lazy) app.js:247:31 79ms
| |~readFileAfterClose (lazy) fs.js:424:28

» Use faster hash functions to replace MD5

» Reduce checksum searching overhead

Replacing MD5 with SipHash in Chunk
Comparison

A comparison of pseudorandom hash functions

Hash Function Collision Probability | Cycles Per Byte
MD5 Low (< 1079) 5.58
Murmur3 High (=~ 1.05 x 107%) 0.33
CityHash High (=~ 1.03 x 10~%) 0.23
FNV High (=~ 1.09 x 107%) 1.75

Higch (~9.92 x 1075)

0.14 SipHash remain low

Low (< 107°9)

Collision Probability
at much faster speed

1.13

14

Reduce Checksum Searching by Exploiting
Locality of File Edits.

File f| Chunk #1 | Chunk #2 | Chunk #3 | Chunk #4 Chunk #n An Edit
Chunk #3 / \\\
=1 Adler32 MDS5 .
% N Chunk #1 A Flle - I .
& Adler32 MD5 T
£ b i hunk 23 A Continuous Sub-Edit
Adler32 MD5 Adler32 MD5
Chunk #2 (a) An edit consists of several continuous sub-edits.
N Adler32 MDS5
. Over 95% modified files have less than 10 edits.
Searching
Checksum Hash Table
search Adler32-1 Adler32-2 Adler32-3 Adler32-4
Compare MD5-1 MD5-2 MD5-3 MD5-4
Block1 l Block2 Block3 Block4

15

Reduce Checksum Searching by Exploiting
Locality of File Edits.

File f| Chunk #1 | Chunk #2 | Chunk #3 | Chunk #4 Chunk #n An Edit
Chunk #3 / \\\
=1 Adler32 MDS5 .
_;‘-:' N Chunk #1 A Flle - . '
S Adler32 MD5 T
£ b i hunk 23 A Continuous Sub-Edit
Adler32 MD5 Adler32 MD5
Chunk #2 (a) An edit consists of several continuous sub-edits.
N Adler32 MDS5
. Over 95% modified files have less than 10 edits.
Searching
Checksum Hash Table
search Adler32-1 Adler32-2 Adler32-3 Adler32-4
Compare MD5-1 MD5-2 MD5-3 MD5-4
Block1 l Block2 Block3 Block4

16

A Series of attempts of other techs:
Native Extension, Parallelism

* Native Extension: leverage the native client for web browsers. ->
as quick as native rsync, supported platforms limited (e.g. Mobile

web) =
C/C++

Nacl
SC i

’ HTML HTML D C

JavaScri pt

* WebRsync-Parallel: using HTML5 web workers to avoid
stagnations. -> avoid stagnation but not on sync time

postMessage(data)

HTML5 WEB PAGE Worker js

postMessage(data)

* The drawback of WebRsync cannot be fundamentally addressed
through above optimizations

17

Evaluation Setup

Web Client@CERNET
Beijing

OSS Storage @UniCom _
ECS VM @UniCom Shanghai

Basic experiment setup visualized in a map of China

Sync Time

—-—- WebRsync ! ,:-

— WebR2sync v
O — - WebR2sync with SipHash /,/
S fee WebR2sync+ v
8 0 ~— rsync ’1,/
T T S
S
)
E .
= - = - I
O I — e Eeem e —- et E e
e BEoesssssssessensiesesessanaseee II I
> SR x : 3 :
)] E

102 l . . 1 L 1

1 10 100 1K 10K 100K

Append Size (Byte)

WebR2sync+ is 2-3 times faster than WebR2sync
and 15-20 times faster than WebRsync

Throughput

NoWebRsync .
rsync [
webR2sync+ NGNS
WebR2sync with SipHash | GGG
WebR2sync]
WebRsync T

0 2000 4000 6000 8000
Number of Concurrent Users

Regular Workload

NoWebRsync .
sy [
webR2sync+ [
WebR2sync with SipHash _
WebR2sync -
WebRsync -

0 200 400 600 800
Number of Concurrent Users

Intensive Workload

This throughput is as 4 times as that of WebR2sync/rsync
and as 9 times as that of NoWebRsync.

20

Conclusion

* Implement a workable web-based delta sync named WebRsync
using JavaScript and Html5, then quantifying the stagnation on
browser by StagMeter.

 WebR2sync: Reverse the rsync process by moving
computation-intensive operations from client with JavaScript
to server side with efficient native C code.

 WebR2sync+: By exploiting the edit locality and trading off
hash algorithms, we make the computation overhead
affordable at the server side.

Future Work

* A seamless way to integrate the server-side design of
WebR2sync+ with the back-end of commercial cloud
storage vendors (like Dropbox and iCloud Drive).

* Explore the benefits of using more fine-grained and
complex delta sync protocols, such as CDC and its
variants.

* We envision to expand the usage of WebR2sync+ for a
broader range of web service scenarios.

Q&A

Thanks!

