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Background

* What is Kernel Samepage Merging (KSM)?

__igentical 2 2 Update, different?

Merge Unmerge

* Goal: Reduce memory consumption when duplication exists.

* Effectiveness: There exist tremendous (~¥86%) memory duplications in
real-world applications, Change et al. [ISPA 2011].



Unique Challenges

 Storage deduplication deals with relatively static content, only concerns

about duplication ratio.
* Sparse Indexing [FAST 2009], CAFTL [FAST 2011], EI-Shimi et al. [ATC 2012], Cao et al. [Just now]

* Responsiveness:
 Remove duplications before they exhaust the memory.

* Dynamic nature:
* Duplication status may change over time.




Accelerate the deduplication of memory
which is dynamic in nature!
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Outline

e Observation (Opportunity)

* Overview

* Hierarchical Region Distilling
* Adaptive Partial Hashing
 Evaluation

* Conclusion
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Observation I: Pages within the Same Region

Present Similar Patterns
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* Test: Apache web server and MySQL database serving wordpress website in
Ubuntu 16.04 (kernel version 4.4).
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Duplicated pages concentrate by memory region.




Observation II: Hashing Needs to Be Adaptive

* Various applications need different hashing strengths to differentiate:

* Image applications contain pages with highly similar contents.

* Crypto applications contain diverse contents.
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Overview

* Assuming we have 9 memory regions, i.e., RO — R8.
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Overview

* Hierarchical memory region clustering.

Level N

Level 2

Level 1

7

UMASS
LOWELL

Learning with Purpose

Low

Similarity

High

RO

R7

R3

Ri

R2

R5

R4

R6




Overview

* Hierarchical region distilling.
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Overview

* Hierarchical region distilling.
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Overview

* Hierarchical region distilling + Adaptive partial hashing.
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* Takeaway 1: Promote/demote regions.

Overview » Takeaway 2: Sampling offset shift.

* Takeaway 3: Hash strength adjustment.

* Hierarchical region distilling + Adaptive partial hashing.
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Hierarchical Region Distilling " COW: copy on write

* Memory region characterization — Signatures:
* V_,,: promote regions whose COW-broken ratios are lower than this.
* Vy,p: Promote regions whose duplication ratios are higher than this.
* V,:.: regions living longer than this threshold can be effectively scanned.

e Default empirical values:
* Voow = 10%, V4, = 20% and Vi, = 100ms.

Various commercial products adopt UKSM and observe different sweet spots.
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Hierarchical Region Distilling

ﬂ Write on merged tree, adjust V,,
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*: We adopt Linux KSM black-red tree
design to track ‘'merged’ and ‘unmerged’ pages.
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Adaptive Partial Hashing

Half hashing strength

We optimize SuperFastHash with the following key contributions:
* Minimizing collisions — Optimizing avalanche for SuperFastHash [Hsieh 2004].
* Progressive hashing — Support additivity while adjust hash strengths.

m Hash value H1 (round n)
Combine to H1,2
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Adjust
hash strength

Strength = Strength + Delta

Hash value H2 (round n+1)




Evaluation

* 6,000 Lines of Code in Linux kernel.
e OS: Vanilla kernel 4.4.

e Hardware:
e Intel® Core ™ i7 CPU 920 with four 2.67 GHz cores.
* 12 GB memory.

* For fair comparison
 KSM is upgraded to SuperFastHash.
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Evaluation Goals

* How efficient is UKSM on different workloads?
* How flexible is UKSM regarding customization?
 What’s the responsiveness of UKSM vs KSM?

* How does adaptive partial hashing perform compared to non-adaptive
algorithm?

* What’s the performance penalty of UKSM?
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Evaluation Goals

* How flexible is UKSM regarding customization?
* What'’s the responsiveness of UKSM vs KSM?
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Setting: Booting 25 VMs, each
with 1 VCPU, 1GB memory.

Parameter Analysis
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* UKSM allows four levels of scanning strengths:

= e Level Full allows upto 95% CPU consumption and can scan the entire memory in 2 seconds.
m * Each lower level will half the CPU and potentially increase the scan time by 2x. =
bhAsS %




Responsiveness Analysis
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Setting: Two processes, each with 4GB memory. One
contains identical pages while the other random ones.

memory saving

EfﬂCIency - CPU consumption
100 . . . . : :
90 — UKSM 1
- KSM 100 Pages
sop  |meme- KSM 1000 Pages|
70 — KSM 2000 Pages| |
60 1
50 1
AN A
40 .
* "IF
ol {¥ .?T’ﬂ"# il I l?"ﬁﬂ
I . I 1 : I
20 |1 i RRIRIHIE IR HI.
* HEE L] g f i
10 ! il IR i .
i illi i i LINIHIN
0
0 100 200 300 400 500 600
Seconds

UKSM is 8.3%, 12.6%, 11.5x more efficient than
KSM at scan speed of 100, 1000, 2000 pages.
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Related Work

* Content-based approach:
 VMware ESX server, IBM active memory deduplication, Red Hat ksmtuned.
* Majority of them treat every page equally.

* |/O hint based approach:
* KSM++ [Resolve 2012], XLH[Usenix ATC 2013], CMD [VEE 2014].
* Cannot track anonymous memory space (no I/0) or require hardware change.

 SmartMD [Usenix ATC ‘17]:

* Consider various page sizes; we are orthogonal.
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Conclusion

* Memory deduplication faces the unique challenges. Our techniques:
* Hierarchical region distilling.
* Adaptive partial hashing.

 UKSM saves 12.6x and 5x more memory than KSM on static and
dynamic workload, respectively, in the same time envelope.

e UKSM is an in production system: https://github.com/dolohow/uksm.
* It has ~110 (watch, star and fork) after less than one year in GitHub.
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Thank You & Questions?

We would like to thank our shepherd Dr. Hong Jiang and anonymous reviewers!



