UKSM: Swift Memory Deduplication
via Hierarchical and Adaptive
Memory Region Distilling

Nai Xia* ChenTian* Yan Luo* Hang Liut Xiaoliang Wang*

*: Nanjing University +: University of Massachusetts Lowell

!/,I

UMASS
LOWELL

ning with Purpos

e iriiendiR Feb/15/2018

Background

* What is Kernel Samepage Merging (KSM)?

__igentical 2 2 Update, different?

Merge Unmerge

* Goal: Reduce memory consumption when duplication exists.

* Effectiveness: There exist tremendous (~¥86%) memory duplications in
real-world applications, Change et al. [ISPA 2011].

Unique Challenges

 Storage deduplication deals with relatively static content, only concerns

about duplication ratio.
* Sparse Indexing [FAST 2009], CAFTL [FAST 2011], EI-Shimi et al. [ATC 2012], Cao et al. [Just now]

* Responsiveness:
 Remove duplications before they exhaust the memory.

* Dynamic nature:
* Duplication status may change over time.

Accelerate the deduplication of memory
which is dynamic in nature!

...................

Outline

e Observation (Opportunity)

* Overview

* Hierarchical Region Distilling
* Adaptive Partial Hashing
 Evaluation

* Conclusion

LLLLLL

Observation I: Pages within the Same Region

Present Similar Patterns

8000

Duplicated Pages
N B o
o o o
- o o
o o o

o
o-—

AALI A All';l“ s Ll l“

200 400 600
Docker Memory Space

1000

* Test: Apache web server and MySQL database serving wordpress website in
Ubuntu 16.04 (kernel version 4.4).

LLLLLL

Duplicated pages concentrate by memory region.

Observation II: Hashing Needs to Be Adaptive

* Various applications need different hashing strengths to differentiate:

* Image applications contain pages with highly similar contents.

* Crypto applications contain diverse contents.
Page i

mynewkey
BEGIN RSA PR

MIVEpAIBAAKCAQEA2
DP.1y8TAmBBWEShZiG

v2qtQgLyjKMWDU4RSs
BaTltwD/rD5aahlUADbN

LLLLLL
,,,,,,,,,,,,,,,,,,,,,

Similarity
Low High

-

Overview

* Assuming we have 9 memory regions, i.e., RO — R8.

7A
Z =

Overview

* Hierarchical memory region clustering.

Level N

Level 2

Level 1

7

UMASS
LOWELL

Learning with Purpose

Low

Similarity

High

RO

R7

R3

Ri

R2

R5

R4

R6

Overview

* Hierarchical region distilling.

Level N

Level 2

Level 1

7

UMASS
LOWELL

Learning with Purpose

Low

Similarity

High

Ri

I R2

Overview

* Hierarchical region distilling.

e (F (3

IR

Level 1 iRZ R*

.

tee

P
m Round n
UMASS

LOWELL

Learning with Purpose

Level 2

Level 1

Similarity
High

Low
.
RO R7
R2 R5 R4 R6
Roundn+1

u

Overview

* Hierarchical region distilling + Adaptive partial hashing.

we]

1

IR

Level 1 iRZ R*

.

tee

LLLLLL

Rou

nd n

HE!

t b

144 i

I

) O

Round n +

e 4
:

1

* Takeaway 1: Promote/demote regions.

Overview » Takeaway 2: Sampling offset shift.

* Takeaway 3: Hash strength adjustment.

* Hierarchical region distilling + Adaptive partial hashing.

iz 8] T 1
} é[)]] e
&

LLLLLL

Hierarchical Region Distilling " COW: copy on write

* Memory region characterization — Signatures:
* V_,,: promote regions whose COW-broken ratios are lower than this.
* Vy,p: Promote regions whose duplication ratios are higher than this.
* V,:.: regions living longer than this threshold can be effectively scanned.

e Default empirical values:
* Voow = 10%, V4, = 20% and Vi, = 100ms.

Various commercial products adopt UKSM and observe different sweet spots.

A

Hierarchical Region Distilling

ﬂ Write on merged tree, adjust V,,

PN

move page from .
ﬂ Hjnmerged to merged tree Adjust Vyyp
Ah

*: We adopt Linux KSM black-red tree
design to track ‘'merged’ and ‘unmerged’ pages.

Region Ri Sample & Hash>

A
o :

Adaptive Partial Hashing

Half hashing strength

We optimize SuperFastHash with the following key contributions:
* Minimizing collisions — Optimizing avalanche for SuperFastHash [Hsieh 2004].
* Progressive hashing — Support additivity while adjust hash strengths.

m Hash value H1 (round n)
Combine to H1,2
7
UMASS Sampled page 16
e FAST:s

Adjust
hash strength

Strength = Strength + Delta

Hash value H2 (round n+1)

Evaluation

* 6,000 Lines of Code in Linux kernel.
e OS: Vanilla kernel 4.4.

e Hardware:
e Intel® Core ™ i7 CPU 920 with four 2.67 GHz cores.
* 12 GB memory.

* For fair comparison
 KSM is upgraded to SuperFastHash.

LLLLLL

Evaluation Goals

* How efficient is UKSM on different workloads?
* How flexible is UKSM regarding customization?
 What’s the responsiveness of UKSM vs KSM?

* How does adaptive partial hashing perform compared to non-adaptive
algorithm?

* What’s the performance penalty of UKSM?

LLLLLL

Evaluation Goals

* How flexible is UKSM regarding customization?
* What'’s the responsiveness of UKSM vs KSM?

LLLLLL

Setting: Booting 25 VMs, each
with 1 VCPU, 1GB memory.

Parameter Analysis

100 T T T T T

6000 .
Full . ool Full |
‘== Medium \ — Quiet

50001| = = = | ow : I 80

. Quiet !

m /\? 70t

= 4000 - &

- C 60F

g S

>

© N

& 3000 =

> >

o -]

S

$ 2000t E-)

=
1000

250 300 0 50 100 150 200 250 300
Seconds

* UKSM allows four levels of scanning strengths:

= e Level Full allows upto 95% CPU consumption and can scan the entire memory in 2 seconds.
m * Each lower level will half the CPU and potentially increase the scan time by 2x. =
bhAsS %

Responsiveness Analysis

11000 . : : : : :
— UKSM
10000 - ———=KSM 100 Pages | |
5 N it KSM 1000 Pages
g 9000 - — KSM 2000 Pages|
c -
S 8000 : — 611 1
(] [
= 7000 ‘| .
oy i
2 6000 ! .
Q !
= !
5000 1 .
1
. 95
soogflL D) _
EYAY
/"o I 100 200 300 400 500 600
e ! Seconds
¥ |
5 !
v

61

7

LOWELL
Learning with Purpose

CPU (% one core)

Setting: Two processes, each with 4GB memory. One
contains identical pages while the other random ones.

memory saving

EfﬂCIency - CPU consumption
100 : :
90 — UKSM 1
- KSM 100 Pages
sop |meme- KSM 1000 Pages|
70 — KSM 2000 Pages| |
60 1
50 1
AN A
40 .
* "IF
ol {¥ .?T’ﬂ"# il I l?"ﬁﬂ
I . I 1 : I
20 |1 i RRIRIHIE IR HI.
* HEE L] g f i
10 ! il IR i .
i illi i i LINIHIN
0
0 100 200 300 400 500 600
Seconds

UKSM is 8.3%, 12.6%, 11.5x more efficient than
KSM at scan speed of 100, 1000, 2000 pages.

21

WELL

Related Work

* Content-based approach:
 VMware ESX server, IBM active memory deduplication, Red Hat ksmtuned.
* Majority of them treat every page equally.

* |/O hint based approach:
* KSM++ [Resolve 2012], XLH[Usenix ATC 2013], CMD [VEE 2014].
* Cannot track anonymous memory space (no I/0) or require hardware change.

 SmartMD [Usenix ATC ‘17]:

* Consider various page sizes; we are orthogonal.

&

Conclusion

* Memory deduplication faces the unique challenges. Our techniques:
* Hierarchical region distilling.
* Adaptive partial hashing.

 UKSM saves 12.6x and 5x more memory than KSM on static and
dynamic workload, respectively, in the same time envelope.

e UKSM is an in production system: https://github.com/dolohow/uksm.
* It has ~110 (watch, star and fork) after less than one year in GitHub.

A

Thank You & Questions?

We would like to thank our shepherd Dr. Hong Jiang and anonymous reviewers!

