
UKSM: Swift Memory Deduplication
via Hierarchical and Adaptive

Memory Region Distilling

Nai Xia* Chen Tian* Yan Luo+ Hang Liu+ Xiaoliang Wang*
*: Nanjing University +: University of Massachusetts Lowell

Feb/15/2018

Background
• What is Kernel Samepage Merging (KSM)?

2

page 1

page 2
Identical ?

page 1

page 2
Update, different?

page 1

page 2

• Goal: Reduce memory consumption when duplication exists.
• Effectiveness: There exist tremendous (~86%) memory duplications in

real-world applications, Change et al. [ISPA 2011].

…

Merge Unmerge

Unique Challenges

• Storage deduplication deals with relatively static content, only concerns
about duplication ratio.
• Sparse Indexing [FAST 2009] , CAFTL [FAST 2011], El-Shimi et al. [ATC 2012], Cao et al. [Just now]

• Responsiveness:
• Remove duplications before they exhaust the memory.

• Dynamic nature:
• Duplication status may change over time.

3

Accelerate the deduplication of memory
which is dynamic in nature!

4

Outline

• Observation (Opportunity)
• Overview
• Hierarchical Region Distilling
• Adaptive Partial Hashing
• Evaluation
• Conclusion

5

Observation I: Pages within the Same Region
Present Similar Patterns0 200 400 600 800 1000

0

2

4

6

8
x 104

KVM Memory Space
Du

pl
ica

te
d

Pa
ge

s

0 200 400 600 800 1000
0

2000

4000

6000

8000

Docker Memory Space

Du
pl

ica
te

d
Pa

ge
s

6

• Test: Apache web server and MySQL database serving wordpress website in
Ubuntu 16.04 (kernel version 4.4).

Duplicated pages concentrate by memory region.

*Please refer to our paper for
other pattern analysis

Observation II: Hashing Needs to Be Adaptive

• Various applications need different hashing strengths to differentiate:
• Image applications contain pages with highly similar contents.
• Crypto applications contain diverse contents.

7

We should adjust hashing strength accordingly.

Page i

Page j

Page i

Page j

Overview

• Assuming we have 9 memory regions, i.e., R0 – R8.

8

R0 R1 R2 R3 R4

R5 R6 R7 R8

Ri

Low High
Similarity

Overview

• Hierarchical memory region clustering.

9

R0

R1

R2

R3

R4R5 R6

R7

R8

Level 1

Level 2

Level N

Ri

Low High
Similarity

…

Overview

• Hierarchical region distilling.

10

R0

R1

R2

R3

R4R5 R6

R7

R8

Level 1

Level 2

Level N

Ri

Low High
Similarity

…

R3R3

R8

Overview

• Hierarchical region distilling.

11

Ri

Low High
Similarity

R0

R1

R2 R4R5 R6

R7

R8

Level 1

Level 2

Level N

Round n

…

R0

R1

R2 R4R5 R6

R7

Level 1

Level 2

Level N

Round n + 1

…

R3

R3 R8

Overview

• Hierarchical region distilling + Adaptive partial hashing.

12

Ri

Low High
Similarity

R0

R1

R2 R4R5 R6

R7

R8

Level 1

Level 2

Level N

R0

R1

R2 R4R5 R6

R7

…

Round n Round n + 1

R3

R3 R8

Overview

13

R0

R1

R2 R4R5 R6

R7

R8

Level 1

Level 2

Level N

R0

R1

R2 R4R5 R6

R7

• Takeaway 1: Promote/demote regions.

Takeaway 1…

Takeaway 2

• Takeaway 2: Sampling offset shift.

Takeaway 3

• Takeaway 3: Hash strength adjustment.

Round n Round n + 1

• Hierarchical region distilling + Adaptive partial hashing.

Hierarchical Region Distilling
• Memory region characterization – Signatures:
• Vcow: promote regions whose COW-broken ratios are lower than this.
• Vdup: promote regions whose duplication ratios are higher than this.
• Vlife: regions living longer than this threshold can be effectively scanned.

• Default empirical values:
• Vcow = 10%, Vdup = 20% and Vlife = 100ms.

Various commercial products adopt UKSM and observe different sweet spots.

14

* COW: copy on write

Hierarchical Region Distilling

15

Region Ri Sample & Hash

Treemerge

Treeunmerge

Adjust Vdup

*: We adopt Linux KSM black-red tree
design to track ’merged’ and ’unmerged’ pages.

Write on merged tree, adjust Vcow

move page from
unmerged to merged tree

Adaptive Partial Hashing

16

Half hashing strength Strength = Strength ± DeltaProbe state

Adjust
hash strength

We optimize SuperFastHash with the following key contributions:
• Minimizing collisions – Optimizing avalanche for SuperFastHash [Hsieh 2004].
• Progressive hashing – Support additivity while adjust hash strengths.

Hash Hash value H2 (round n+1)

Combine to H1,2
Hash Hash value H1 (round n)1st half

2nd half

Sampled page

Evaluation

• 6,000 Lines of Code in Linux kernel.

• OS: Vanilla kernel 4.4.

• Hardware:
• Intel® Core ™ i7 CPU 920 with four 2.67 GHz cores.
• 12 GB memory.

• For fair comparison
• KSM is upgraded to SuperFastHash.

17

Evaluation Goals

• How efficient is UKSM on different workloads?
• How flexible is UKSM regarding customization?
• What’s the responsiveness of UKSM vs KSM?
• How does adaptive partial hashing perform compared to non-adaptive

algorithm?
• What’s the performance penalty of UKSM?

18

Evaluation Goals

• How efficient is UKSM on different workloads?
• How flexible is UKSM regarding customization?
• What’s the responsiveness of UKSM vs KSM?
• How does adaptive partial hashing perform compared to non-adaptive

algorithm?
• What’s the performance penalty of UKSM?

19

Parameter Analysis

20

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Seconds

C
PU

 U
til

iz
at

io
n

(%
)

Full
Quiet

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Seconds

M
em

or
y

Sa
vi

ng
 (M

B)

Full
Medium
Low
Quiet

• UKSM allows four levels of scanning strengths:
• Level Full allows upto 95% CPU consumption and can scan the entire memory in 2 seconds.
• Each lower level will half the CPU and potentially increase the scan time by 2x.

Setting: Booting 25 VMs, each
with 1 VCPU, 1GB memory.

Catching up time

Responsiveness Analysis

0 100 200 300 400 500 600
Seconds

4000

5000

6000

7000

8000

9000

10000

11000

M
em

or
y

U
til

iz
at

io
n

(M
B)

UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

21

611

95

61
5

0 100 200 300 400 500 600
Seconds

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (%
 o

ne
 c

or
e)

UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

UKSM is 8.3×, 12.6×, 11.5× more efficient than
KSM at scan speed of 100, 1000, 2000 pages.

Efficiency =	 "#"$%&	'()*+,-./	0$+'1"23*$+

Setting: Two processes, each with 4GB memory. One
contains identical pages while the other random ones.

Related Work

• Content-based approach:
• VMware ESX server, IBM active memory deduplication, Red Hat ksmtuned.
• Majority of them treat every page equally.

• I/O hint based approach:
• KSM++ [Resolve 2012], XLH[Usenix ATC 2013], CMD [VEE 2014].
• Cannot track anonymous memory space (no I/O) or require hardware change.

• SmartMD [Usenix ATC ‘17]:
• Consider various page sizes; we are orthogonal.

22

Conclusion

• Memory deduplication faces the unique challenges. Our techniques:
• Hierarchical region distilling.
• Adaptive partial hashing.

• UKSM saves 12.6x and 5x more memory than KSM on static and
dynamic workload, respectively, in the same time envelope.

• UKSM is an in production system: https://github.com/dolohow/uksm.
• It has ~110 (watch, star and fork) after less than one year in GitHub.

23

Thank You & Questions?

24

We would like to thank our shepherd Dr. Hong Jiang and anonymous reviewers!

