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Erasure Coding for Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

Fault tolerance is achieved using erasure coding

File or Object

Split it into 
chunks

Ak

Store the n chunks in different 
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples of MDS
codes.
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Erasure Codes and Node Failures

A median of 50 nodes are unavailable per day.

98% of the failures are single node failures.

A median of 180TB of network traffic per day is
generated in order to reconstruct the RS coded
data corresponding to unavailable machines.

Thus there is a strong need for erasure codes
that can efficiently recover from single-node
failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook

Warehouse Cluster,” USENIX Hotstorage, 2013.
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Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...
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Regenerating Codes
1 We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration

(MSR) codes

2 MSR codes are MDS and have least possible repair bandwidth

3 Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

100
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100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB
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Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...
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Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then 
Repair BW = (n-1)α/(n-k)



n = k+m 

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

Larger the m=n-k, larger the savings!!

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then 
Repair BW = (n-1)α/(n-k)



Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.
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4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

among the class of MSR codes, the Clay code is arguably a champion...

Image courtesy: denverpost.com
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Placing the Clay Code in Perspective

Comparing the Clay code with repair-efficient codes that have undergone systems implementation

Code MDS
Least 

Repair 
BW 

Least 
Disk 
Read

Least 
α Restrictions

Implemented 
Distributed 

Systems

Piggybacked RS
(Sigcomm 2014)

✔ ✗ ✗ - None HDFS

Product Matrix
(FAST 2015)

✔ ✔ ✔ ✔ Limited to 
Storage 

Overhead > 2

Own System

Butterfly Code
(FAST 2016)

✔ ✔ ✗ ✗ Limited to the 2 
parity nodes

HDFS, Ceph

HashTag Code
(Trans. on  Big Data 

2017)

✔ ✗ ✗ - Only 
systematic node 

repair

HDFS

Clay
(FAST 2018)

✔ ✔ ✔ ✔ None! Ceph

The Butterfly, HashTag codes have least disk read for systematic node repair.

#HT: A similar table given in the paper and the poster had erroneous information on HT codes. 9 / 28



Clay Code Construction
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Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward 
Transform (PFT)

  
C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!
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Encoding the Clay Code

The previous slide did not explain how encoding takes place as the code was not in
systematic form.

We will now explain encoding data under the Clay Code.

12 / 28



64MB

Consider a file of size 64MB

● We show encoding of the file using (n  = 4, k = 2) Clay code.



Break the file into k = 2 data chunks each of 32MB.
32MB 32MB



3D cube representation of Clay Code
32MB 32MB

z = (0,0)

z = (1,1)

z

y
x The cube has:

● 4 columns, which correspond to 
the 4 chunks (each of size 32MB, 
stored in a different disk/node).

● 4 horizontal planes.

● Each column has 4 points that 
correspond to sub-chunks of size 
8MB



Place two 32MB chunks in two data nodes
32MB

z = (0,0)

z

y
x

z = (1,1)



Place two 32MB chunks in two data nodes

z = (0,0)

z = (1,1)

z

yx



We now have the data nodes



We will now compute the parity nodes



Will get there through an intermediate “Uncoupled data cube”



Start filling the Uncoupled data cube on the right as follows



C
C*

Certain pairs of points in the cube are “coupled”



C
C*

U U*

PRT

C C*

PRT is a 2x2 matrix transform, It is reverse of PFT



C
C* U U*

Place the sub-chunks obtained in the uncoupled data cube
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Place the sub-chunks obtained in the uncoupled data cube



Copy

Red dotted sub-chunks are not paired, they are simply carried over



Red dotted  sub-chunks are not paired, they are simply carried over

Copy



We now have data-part of the uncoupled data cube



z = (0,0)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)
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z = (1,0)

RS 
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)



z = (0,1)

RS 
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)



z = (1,1)

RS 
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)



Now we have the complete Uncoupled data cube



Parity sub-chunks of Coupled data cube can now be computed



U

U*

Perform PFT



C C*

PFT

U U* U

U*

Perform PFT



C C*

Perform PFT
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C C*

PFT

U U*

U

U*

Perform PFT



C C*

Perform PFT



Perform PFT
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Red dotted sub-chunks are simply carried over



Red dotted sub-chunks are simply carried over

Copy



The encoding is now complete!



Recovery from single node failure
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Node Repair: One node fails



Only half of planes participate in repair

● Total Helper Data = 8MB X 3 X 2 = 48MB

● As opposed to RS code = 8MB X 2 X 4  = 64MB

● Much larger savings seen for m > 2



Perform PRT to get possible uncoupled sub-chunks

PRT



Run RS decoding on each of the selected planes

PRT

RS 
Decode
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Run RS decoding on each of the selected planes

PRT

RS 
Decode



PRT

Run RS decoding on each of the selected planes

RS 
Decode



We now have the following sub-chunks available



Half the number of required sub-chunks are now already computed

Copy



Compute C* from C and U

C,UC*



Compute C* from C and U

C,UC*



Compute C* from C and U

C,UC*



Compute C* from C and U

C,UC*



Replacement 
node

Content of failed node is now completely recovered



MDS Property of Clay Code

Any n − k node failures can be recovered from.

The decoding algorithm recovers the lost symbols layer by layer sequentially.

It uses functions scalar MDS decode, PFT, PRT and the function that computes U from {U∗,C}.

Decoding algorithm involves α scalar MDS decode operations along with 2nβ Galois field scalar
multiplications and nβ Galois XOR operations.

RS decode for the same amount of data involve α scalar MDS decode operations.
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Implementation and Evaluation of Clay Code
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Ceph: Architecture
Object Storage Daemon (OSD): process of Ceph, associated with a storage unit.

Pool: Logical partitions, associated with an erasure-code profile.

Placement Group(PG): Collection of n OSDs.

Each pool can have a single or multiple PGs associated with it.

PG1        

OSD7  OSD1OSD4       

      

OSD5OSD2

       POOL

OSD3        

p-OSD

PG2        

OSD4  OSD3OSD5       

      

OSD1OSD7 OSD6        

p-OSD

Erasure Code Profile

OBJECT 

OBJECT OBJECT 
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Ceph: Contributions

We introduced the notion of sub-chunking to enable use of vector erasure codes with
Ceph.

It is now part of Ceph’s master codebase :)

Clay code will soon be available as an erasure code plugin 1 in Ceph for all parameters
(n, k, d)

1https://github.com/ceph/ceph/pull/14300
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Evaluation of the Clay Code

Evaluated on a 26 node (m4.xlarge) AWS cluster.

One node hosts Monitor (MON) process of Ceph.

Remaining 25 nodes host one OSD each.

Each node has 500GB SSD type volume attached.

Two workloads

I Workload W1: fixed size 64MB objects → stripe size 64MB
I Workload W2: mixture of 1MB, 32MB, and 64MB size objects, → stripe size 1MB

Both single PG and multiple PG (512 PG) experiments.

Codes evaluated: (6, 4, 5), (12, 9, 11) and (20, 16, 19).
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Network Traffic and Disk Read : W1 Workload, 1 PG

Network traffic reduced to 75%, 48%, 34% of
that of RS as predicted by theory.

Repair disk read reduced to 62%, 41%, 29% of
that of RS as predicted by theory.
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Network Traffic and Disk Read : W2 Workload, 1 PG

Network traffic reduced to 75%, 48%, 34% of
that of RS matching the theoretical values.

Reductions same as that for W1.

Disk read for (6, 4, 5) code is optimal

For (12, 9, 11) and (20, 16, 19) codes effect of
fragmented read is observed.
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Fragmented Read

Best and worst case, disk read during repair of
(20,16,19) code for stripe sizes 1MB, 64MB

During repair of a chunk only β < α sub-chunks
are read from each helper nodes.

During worst case failures, the sub-chunks needed
in repair are not located contiguously.

sub-chunk size = stripe size/kα

For (20,16,19) code α = 1024, k = 16. Therefore,
for stripe sizes 64MB and 1MB, the sub-chunk
sizes are 4KB, 64B respectively.

If sub-chunk size is aligned to 4kB (SSD page
granularity), the fragmented-read problem can be
avoided.
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Repair Time and Encoding Time: W1 Workload, 1 PG

Repair time reduced by 1.49x, 2.34x, 3x of that of
RS.

The total encoding time remains almost same as
that of RS.

While, encode computation time of Clay code is
higher than that of RS code by 70%.

This is due to the additional PFT and PRT
operations.
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Normal and Degraded I/O : W1 workload, 1 PG

Better degraded read 16.24%, 9.9%, 27.17% and write throughput increased by 4.52%, 13.58%, 106.68%
of that of RS.

Normal read and write throughput same as that of RS.
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Network Traffic and Disk Read : W1 workload, 512 PG

Assignment of OSDs and objects to PGs is dynamic.

I Number of objects affected by failure of an OSD can vary across different runs of multiple-PG

experiment.

Sometimes an OSD that is already part of the PG can get reassigned as replacement for the failed OSD.

I Number of failures are treated as two resulting in inferior network-traffic performance in multiple-PG

setting.
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Multiple Node Failures

Average theoretical network traffic during repair of
64MB object.

Workload W1, 512 PG

Network traffic increases with increase in number
of failed chunks.
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Conclusions

We provide an open-source implementation of Clay code for any (n, k , d) parameters.

The theoretical promise of the Clay code is reflected in the
evaluation presented here

Specifically, for Workloads with large sized objects, the Clay
code (20, 16, 19):

I resulted in repair time reduction by 3x .

I Improved degraded read and write performance by 27.17%
and 106.68% respectively.

In summary, Clay 
Codes are well 

poised to make the 
leap from theory to 

practice!!!
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Thank You!
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Backup Slides!
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Decode: Two nodes fail



Assign Intersection Score to each plane
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Intersection score is given by the number of hole-dot pairs
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For non erased nodes, get the uncoupled sub-chunks for planes with IS=0
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We now have all the uncoupled sub chunks



The coupled sub chunks can now be computed using PFT

PFT



The decoding is now complete


