
Clay Codes: Moulding MDS Codes to Yield an MSR Code

Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan
Indian Institute of Science (IISc)

P. Vijay Kumar (IISc and USC)

Alexander Barg, Min Ye (UMD)

Srinivasan Narayanamurthy, Syed Hussain, Siddhartha Nandi (NetApp)

16th USENIX Conference on File and Storage Technologies (FAST), 2018
Oakland, CA

1 / 28

Erasure Coding for Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples of MDS
codes.

2 / 28

Erasure Coding for Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples of MDS
codes.

2 / 28

Erasure Coding for Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples of MDS
codes.

2 / 28

Erasure Coding for Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

Fault tolerance is achieved using erasure coding

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples of MDS
codes.

2 / 28

Erasure Codes and Node Failures

A median of 50 nodes are unavailable per day.

98% of the failures are single node failures.

A median of 180TB of network traffic per day is
generated in order to reconstruct the RS coded
data corresponding to unavailable machines.

Thus there is a strong need for erasure codes
that can efficiently recover from single-node
failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook

Warehouse Cluster,” USENIX Hotstorage, 2013.

3 / 28

Erasure Codes and Node Failures

A median of 50 nodes are unavailable per day.

98% of the failures are single node failures.

A median of 180TB of network traffic per day is
generated in order to reconstruct the RS coded
data corresponding to unavailable machines.

Thus there is a strong need for erasure codes
that can efficiently recover from single-node
failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook

Warehouse Cluster,” USENIX Hotstorage, 2013.
3 / 28

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

4 / 28

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

4 / 28

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

4 / 28

Conventional Node Repair of an RS Code

The conventional repair of an RS code is inefficient

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

4 / 28

Regenerating Codes
1 We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration

(MSR) codes

2 MSR codes are MDS and have least possible repair bandwidth

3 Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB

5 / 28

Regenerating Codes
1 We will deal here only in the subclass of regenerating codes known as Minimum Storage Regeneration

(MSR) codes

2 MSR codes are MDS and have least possible repair bandwidth

3 Repair bandwidth is defined as the total amount of data downloaded for repair of a single node

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB

5 / 28

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

6 / 28

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

6 / 28

n = k+m

Chunk

k data chunks m parity chunks

n = k+m

Chunk

k data chunks m parity chunks

k

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level ᶔ < α

 d
k<d<n

kα
(1GB)

dᶔ
<< kα

(325MB)

Larger the m=n-k, larger the savings!!

ᶔ = α/(d-k+1)
 ᶔ is a fraction of α

Repair BW = dᶔ
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

7 / 28

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

7 / 28

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.

I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

7 / 28

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

7 / 28

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

7 / 28

4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

among the class of MSR codes, the Clay code is arguably a champion...

Image courtesy: denverpost.com

8 / 28

4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

among the class of MSR codes, the Clay code is arguably a champion...

Image courtesy: denverpost.com

8 / 28

Placing the Clay Code in Perspective

Comparing the Clay code with repair-efficient codes that have undergone systems implementation

Code MDS
Least

Repair
BW

Least
Disk
Read

Least
α Restrictions

Implemented
Distributed

Systems

Piggybacked RS
(Sigcomm 2014)

✔ ✗ ✗ - None HDFS

Product Matrix
(FAST 2015)

✔ ✔ ✔ ✔ Limited to
Storage

Overhead > 2

Own System

Butterfly Code
(FAST 2016)

✔ ✔ ✗ ✗ Limited to the 2
parity nodes

HDFS, Ceph

HashTag Code
(Trans. on Big Data

2017)

✔ ✗ ✗ - Only
systematic node

repair

HDFS

Clay
(FAST 2018)

✔ ✔ ✔ ✔ None! Ceph

The Butterfly, HashTag codes have least disk read for systematic node repair.

#HT: A similar table given in the paper and the poster had erroneous information on HT codes. 9 / 28

Clay Code Construction

10 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!

11 / 28

Moulding an MDS Code to Yield a (4, 2) Clay Code

(0,0) (0,1)
(1,0) (1,1)

Parity
Data

Two sub-chunks are encoded using (4, 2)
scalar MDS code.

→
z=0

x
y

z=1

z=2

z=3

Layer four such units.

→

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Index each layer z using two bits
(corresponding to the location of the two

red dots in that layer).

U*
U

sub-chunks such as (U,U∗) are paired
(yellow rectangles connected by a dotted

line).

→

Pairwise Forward
Transform (PFT)

C
C*

U

U*= A

Any two sub-chunks out of
{U,U∗,C ,C∗} can be computed

from remaining two.

→

C
C*

Perform PFT on paired sub-chunks and
copy the unpaired sub-chunks to get the

Clay code.

Can be generalized to any (n, k , d)!!
11 / 28

Encoding the Clay Code

The previous slide did not explain how encoding takes place as the code was not in
systematic form.

We will now explain encoding data under the Clay Code.

12 / 28

64MB

Consider a file of size 64MB

● We show encoding of the file using (n = 4, k = 2) Clay code.

Break the file into k = 2 data chunks each of 32MB.
32MB 32MB

3D cube representation of Clay Code
32MB 32MB

z = (0,0)

z = (1,1)

z

y
x The cube has:

● 4 columns, which correspond to
the 4 chunks (each of size 32MB,
stored in a different disk/node).

● 4 horizontal planes.

● Each column has 4 points that
correspond to sub-chunks of size
8MB

Place two 32MB chunks in two data nodes
32MB

z = (0,0)

z

y
x

z = (1,1)

Place two 32MB chunks in two data nodes

z = (0,0)

z = (1,1)

z

yx

We now have the data nodes

We will now compute the parity nodes

Will get there through an intermediate “Uncoupled data cube”

Start filling the Uncoupled data cube on the right as follows

C
C*

Certain pairs of points in the cube are “coupled”

C
C*

U U*

PRT

C C*

PRT is a 2x2 matrix transform, It is reverse of PFT

C
C* U U*

Place the sub-chunks obtained in the uncoupled data cube

C
C*

U
U*

Place the sub-chunks obtained in the uncoupled data cube

C
C*

Place the sub-chunks obtained in the uncoupled data cube

C
C*

U U*

PRT

C C*

Place the sub-chunks obtained in the uncoupled data cube

C
C*

U U*

Place the sub-chunks obtained in the uncoupled data cube

C
C*

U
U*

Place the sub-chunks obtained in the uncoupled data cube

Place the sub-chunks obtained in the uncoupled data cube

Copy

Red dotted sub-chunks are not paired, they are simply carried over

Red dotted sub-chunks are not paired, they are simply carried over

Copy

We now have data-part of the uncoupled data cube

z = (0,0)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (0,0)

RS
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (0,0)

RS
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (0,0)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (1,0)

RS
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (0,1)

RS
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

z = (1,1)

RS
Encode

(4,2)

Each plane is Reed-Solomon encoded to obtain parity points (sub-chunks)

Now we have the complete Uncoupled data cube

Parity sub-chunks of Coupled data cube can now be computed

U

U*

Perform PFT

C C*

PFT

U U* U

U*

Perform PFT

C C*

Perform PFT

Perform PFT

C C*

PFT

U U*

U

U*

Perform PFT

C C*

Perform PFT

Perform PFT

Copy

Red dotted sub-chunks are simply carried over

Red dotted sub-chunks are simply carried over

Copy

The encoding is now complete!

Recovery from single node failure

13 / 28

Node Repair: One node fails

Only half of planes participate in repair

● Total Helper Data = 8MB X 3 X 2 = 48MB

● As opposed to RS code = 8MB X 2 X 4 = 64MB

● Much larger savings seen for m > 2

Perform PRT to get possible uncoupled sub-chunks

PRT

Run RS decoding on each of the selected planes

PRT

RS
Decode

Run RS decoding on each of the selected planes

PRT

RS
Decode

Run RS decoding on each of the selected planes

PRT

RS
Decode

PRT

Run RS decoding on each of the selected planes

RS
Decode

We now have the following sub-chunks available

Half the number of required sub-chunks are now already computed

Copy

Compute C* from C and U

C,UC*

Compute C* from C and U

C,UC*

Compute C* from C and U

C,UC*

Compute C* from C and U

C,UC*

Replacement
node

Content of failed node is now completely recovered

MDS Property of Clay Code

Any n − k node failures can be recovered from.

The decoding algorithm recovers the lost symbols layer by layer sequentially.

It uses functions scalar MDS decode, PFT, PRT and the function that computes U from {U∗,C}.

Decoding algorithm involves α scalar MDS decode operations along with 2nβ Galois field scalar
multiplications and nβ Galois XOR operations.

RS decode for the same amount of data involve α scalar MDS decode operations.

14 / 28

Implementation and Evaluation of Clay Code

15 / 28

Ceph: Architecture
Object Storage Daemon (OSD): process of Ceph, associated with a storage unit.

Pool: Logical partitions, associated with an erasure-code profile.

Placement Group(PG): Collection of n OSDs.

Each pool can have a single or multiple PGs associated with it.

PG1

OSD7 OSD1OSD4

OSD5OSD2

 POOL

OSD3

p-OSD

PG2

OSD4 OSD3OSD5

OSD1OSD7 OSD6

p-OSD

Erasure Code Profile

OBJECT

OBJECT OBJECT

16 / 28

Ceph: Contributions

We introduced the notion of sub-chunking to enable use of vector erasure codes with
Ceph.

It is now part of Ceph’s master codebase :)

Clay code will soon be available as an erasure code plugin 1 in Ceph for all parameters
(n, k, d)

1https://github.com/ceph/ceph/pull/14300
17 / 28

Evaluation of the Clay Code

Evaluated on a 26 node (m4.xlarge) AWS cluster.

One node hosts Monitor (MON) process of Ceph.

Remaining 25 nodes host one OSD each.

Each node has 500GB SSD type volume attached.

Two workloads

I Workload W1: fixed size 64MB objects → stripe size 64MB
I Workload W2: mixture of 1MB, 32MB, and 64MB size objects, → stripe size 1MB

Both single PG and multiple PG (512 PG) experiments.

Codes evaluated: (6, 4, 5), (12, 9, 11) and (20, 16, 19).

18 / 28

Network Traffic and Disk Read : W1 Workload, 1 PG

Network traffic reduced to 75%, 48%, 34% of
that of RS as predicted by theory.

Repair disk read reduced to 62%, 41%, 29% of
that of RS as predicted by theory.

19 / 28

Network Traffic and Disk Read : W2 Workload, 1 PG

Network traffic reduced to 75%, 48%, 34% of
that of RS matching the theoretical values.

Reductions same as that for W1.

Disk read for (6, 4, 5) code is optimal

For (12, 9, 11) and (20, 16, 19) codes effect of
fragmented read is observed.

20 / 28

Fragmented Read

Best and worst case, disk read during repair of
(20,16,19) code for stripe sizes 1MB, 64MB

During repair of a chunk only β < α sub-chunks
are read from each helper nodes.

During worst case failures, the sub-chunks needed
in repair are not located contiguously.

sub-chunk size = stripe size/kα

For (20,16,19) code α = 1024, k = 16. Therefore,
for stripe sizes 64MB and 1MB, the sub-chunk
sizes are 4KB, 64B respectively.

If sub-chunk size is aligned to 4kB (SSD page
granularity), the fragmented-read problem can be
avoided.

21 / 28

Repair Time and Encoding Time: W1 Workload, 1 PG

Repair time reduced by 1.49x, 2.34x, 3x of that of
RS.

The total encoding time remains almost same as
that of RS.

While, encode computation time of Clay code is
higher than that of RS code by 70%.

This is due to the additional PFT and PRT
operations.

22 / 28

Normal and Degraded I/O : W1 workload, 1 PG

Better degraded read 16.24%, 9.9%, 27.17% and write throughput increased by 4.52%, 13.58%, 106.68%
of that of RS.

Normal read and write throughput same as that of RS.

23 / 28

Network Traffic and Disk Read : W1 workload, 512 PG

Assignment of OSDs and objects to PGs is dynamic.

I Number of objects affected by failure of an OSD can vary across different runs of multiple-PG

experiment.

Sometimes an OSD that is already part of the PG can get reassigned as replacement for the failed OSD.

I Number of failures are treated as two resulting in inferior network-traffic performance in multiple-PG

setting.

24 / 28

Multiple Node Failures

Average theoretical network traffic during repair of
64MB object.

Workload W1, 512 PG

Network traffic increases with increase in number
of failed chunks.

25 / 28

Conclusions

We provide an open-source implementation of Clay code for any (n, k , d) parameters.

The theoretical promise of the Clay code is reflected in the
evaluation presented here

Specifically, for Workloads with large sized objects, the Clay
code (20, 16, 19):

I resulted in repair time reduction by 3x .

I Improved degraded read and write performance by 27.17%
and 106.68% respectively.

In summary, Clay
Codes are well

poised to make the
leap from theory to

practice!!!

26 / 28

Conclusions

We provide an open-source implementation of Clay code for any (n, k , d) parameters.

The theoretical promise of the Clay code is reflected in the
evaluation presented here

Specifically, for Workloads with large sized objects, the Clay
code (20, 16, 19):

I resulted in repair time reduction by 3x .

I Improved degraded read and write performance by 27.17%
and 106.68% respectively.

In summary, Clay
Codes are well

poised to make the
leap from theory to

practice!!!

26 / 28

Conclusions

We provide an open-source implementation of Clay code for any (n, k , d) parameters.

The theoretical promise of the Clay code is reflected in the
evaluation presented here

Specifically, for Workloads with large sized objects, the Clay
code (20, 16, 19):

I resulted in repair time reduction by 3x .

I Improved degraded read and write performance by 27.17%
and 106.68% respectively.

In summary, Clay
Codes are well

poised to make the
leap from theory to

practice!!!

26 / 28

Conclusions

We provide an open-source implementation of Clay code for any (n, k , d) parameters.

The theoretical promise of the Clay code is reflected in the
evaluation presented here

Specifically, for Workloads with large sized objects, the Clay
code (20, 16, 19):

I resulted in repair time reduction by 3x .

I Improved degraded read and write performance by 27.17%
and 106.68% respectively.

In summary, Clay
Codes are well

poised to make the
leap from theory to

practice!!!

26 / 28

Thank You!

27 / 28

Backup Slides!

28 / 28

Decode: Two nodes fail

Assign Intersection Score to each plane

z = (0,0) z = (1,0)

z = (0,1) z = (1,1)

Intersection score is given by the number of hole-dot pairs

Assign Intersection Score to each plane

z = (0,0) z = (1,0)

z = (0,1) z = (1,1)

IS=1

IS=0

IS=2

IS=1

Intersection score is given by the number of hole-dot pairs

For non erased nodes, get the uncoupled sub-chunks for planes with IS=0

IS=1

IS=2

IS=0

IS=1

RS decode to get the remaining uncoupled-subchunks

IS=1

IS=2

IS=0

IS=1

RS
Decode

IS=1

IS=2

IS=0

IS=1

U2*
U1*

C1

C2

Known sub-chunks

We now have following sub-chunks

IS=1

IS=2

IS=0

IS=1

U2*
U1*

C1

C2 U2

U1

Known sub-chunks

Get U2 from U2* and C2

Get U1 from U1* and C1

For non erased nodes, get the uncoupled sub-chunks for planes with IS=1

IS=1

IS=2

IS=0

IS=1

U2*
U1*

C1

C2 U2

U1

RS decode to get the remaining uncoupled-subchunks

RS
Decode

RS
Decode

Known sub-chunks

IS=1

IS=2

IS=0

IS=1

C1
C2

U1*

Known sub-chunks

We now have the following sub-chunks

U2*

IS=1

IS=2

IS=0

IS=1

C1
C2

U1*

Known sub-chunks

U2*

Get U2 from U2* and C2

Get U1 from U1* and C1

U2

U1

For non erased nodes, get the uncoupled sub-chunks for planes with IS=2

IS=1

IS=2

IS=0

IS=1

C1
C2

U1*

RS
Decode

Known sub-chunks

Get the uncoupled sub-chunks for planes with IS=2

U2*

Get U2 from U2* and C2

Get U1 from U1* and C1

U2

U1

We now have all the uncoupled sub chunks

The coupled sub chunks can now be computed using PFT

PFT

The decoding is now complete

