é%"‘ ,
e 1=

High-Performance Transaction Processing
In Journaling File Systems

Y.Son, S. Kim, H. Y. Yeom, and H. Han$

Seoul National University, Korea
SDongduk Women’s University, Korea

Contents

= Motivation and Background
= Design and Implementation
= Evaluation
= Conclusion

Motivation and Background

= Storage technology

= High-performance storage devices (e.g., SSDs) provide low-latency,
high-throughput, and high 1/O parallelism

Highly parallel SSD Highly parallel SSD
(Intel NVMe SSD) (Samsung NVMe SSD)

High-Performance SSDs are widely used in

Motivation and Background

= Motivational evaluation for highly parallel SSDs

= The performance does not scale well or decreases as the number of
cores increases

Experimental Setup
72-cores / Intel P3700 / EXT4 file system

%:800 =+=Tokubench =e=Varmail 2 800 —#—Sysbench —e=Fileserver

2. 600 gﬁoo

= =

:_': 400 E 400

= 200 = 200

= =

5 0 S 0

= 1 2 4 8 18 36 54 72 - 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Motivation and Background

= EXxisting coarse-grained locking and 1/O operations by a single

thread in transaction processing

= Locks on transaction processing in EXT4/JBD2
= Total write time: 52220s (100%)
= j_checkpoint_mutex (mutex lock): 17946s (34.40%)’ Hot lock
= i list_lock (spin lock): 6140s (11.759%) ¥ Hot lock
= j_state lock (r/w lock): 102s (0.19%)

Execution time breakdown
72-cores / Intel P3700 / EXT4 data journaling
sysbench (72threads, total 72 GiB random write)

m others ® | _checkpoint_mutex J_list_lock m | state lock
0 10000 20000 30000 40000 50000 60000
Seconds

Motivation and Background

= QOverall existing locking and 1/O procedure

§ creat() write() write() § write() creat()
NV Z N ¥
& a8
B N commit g N
@ || Jhy || Jhy |l N J _ @ || Jhy || Jhy]| N ihy] Jhg | Jhsl
=1 J U =1 J U
(D) (D)
2 21| b,
= - — S - —
7 journal area original area 7 journal area original area

9 TXID: 1 (committing)

‘5 application thread o cregt) write() write(
| ———> journal thread N ¥
C] transaction buffer list g Mblocked
i checkpoint list Al b
§ g 2 in, H i, H ing 1 checkpoint
i| jh, | Journal head ~ 7N
| v

bh, | buffer head é—, bh, | bh, | bh, bh,

: . 5
spin lock (j_list_lock) 7 journal area original area

mutex lock (j_checkpoint_mutex) !

e TxID: 1 (checkpointing)

Motivation and Background

= Coarse-grained locking limits scalability of multi-cores

insert fetch remove

N

Journaling list
] _ _ (transaction buffer list or
ih 1h; ihg

checkpoint list)

= |/O operation by a single thread limits 1/O parallelism of SSDs

Journaling list
jh, jh, jhs (transaction buffer list or

checkpoint buffer list)

\ 4
A batched and serialized 1/0

Design and Implementation

= Goal

= Optimizing transaction processing (running, committing, checkpointing
) in journaling file systems

= QOur schemes

= Concurrent updates on data structures

= Adopting lock-free data structures and operations using atomic instructions
= Lock-free linked list
= lock-free insert, remove, fetch
= Using atomic instructions
= atomic_add()/atomic_read()/atomic_set()/compare_and_swap()

= Parallel 1/0 in a cooperative manner

= Enabling application threads to the journal and checkpoint I/O operations
not blocking them

= Fetching buffers from the shared linked lists, issuing the 1/Os, and
completing them in parallel

Design and Implementation

= QOverall Proposed Schemes

C;oncurrent updates Concurrent updates

o | creat() write() write() % write() creat()
. | | 1 |
S| 3 N\ (commit 5|y A
(i B i B ihs — 21| jh, Hih, B jhs ||| dbe f 30, f ihs
(3] [«B]
= - VAN = |- VAN
o Parallel 1/0_ ¥
& g bh, || bh, || bhg
3 journal area original area 2 journal area original area
o Running (TxID: 1) e Committing (TxID: 1)
,—> application thread | o COﬂCUI’Fe_nt updates
; ——> journal thread : =2 creat() write() write()
C] transaction buffer list E& g . §
checkpoint list ? } jhy 1 jhy 71 jhg
s . = |\ . J .
jh, | Journal head - S P r— checkpoint
bh, | buffer head & (| bh, | bh, | bh, bh, | bh, | bh, Parallel 1/0
(@]
Q spin lock (j_list_lock) 7 journal area original area

a mutex lock (j_checkpoint_mutex) e Checkpointing (TxID: 1)

Design and Implementation

= Concurrent updates on data structures

= Concurrent insert operations
= Using atomic set instruction

3 BE O 2 Bp
atomic set atomic set atomic set
head (remove) (insert) (insert)
. next [T, next [. next [~ | next [.
Jhy jhe [Jhs [jhe [7] Jhs
prev “prev prev prev L
set removed e
L insert Gc list ta’"’

(logically remove)

dd_buffer(jh, head, tail)

1:

2:

3 jh->prev = atomic_set(tail, jh);
4. If(jh->prev == NULL)

5: head = jh;

6 else

I Jh->prev->next = jh;

8:

'}

Design and Implementation

= Concurrent updates on data structures
= Concurrent remove operations (two-phase removal)

<safe point>
logical I/0 physical
K—— remove ——¢X— processing _X_ remove

journaling list journaling list

free

GC Iist‘i’ L

insert v vVYY
‘ﬁ, YO 1O IO IO
GC list
[]ih []removed jh time

1: del_buffer(jh, head, tail)

2: {

3: atomic_set(jh->remove, remove);
4: jh->gc_prev = atomic_set(tail, jh);
S if(jh->gc_prev == NULL)
6: head = jh;

7 else

8 jh->gc_prev->gc_next = jh;

9

3

Design and Implementation

= Concurrent updates on data structures
= Concurrent fetch operations

< fetch ¢ atomic compare and swap ——>
| / | - |
i @ retch Jhy iocompare jhs i
! next next next [next [[next next ™ next next [
jhy 1 jhy 1 jhs [« jha T ihs	i
prev prev prev prev L= Iprev prev p P :	
	1
: T X o.swap I	
head ' head :	

: journal_io_start(....)

while((jh = head) '= NULL){
if(atomic_cas(head, jh, jh->next) != jh)
continue;
if(atomic_read(jh->removed) == removed)
continue;
submit_io(...);

eooNoRNMRE

“

Design and Implementation

= Parallel 1/0 operations in a cooperative manner
= Allowing the application threads to join the 1/Os not blocking them
= Fetching buffers from the shared linked list concurrently
= [ssuing the I/Os in parallel
= Completing the 1/Os in parallel using per-thread list

next

next next

T1 T2 TE T4 T5
atomic atomic atomic atomic atomic
CAS CAS CAS CAS CAS
AT N N A\ N\ :
j)

" jha) jhs [] jhs [E

shared i'ﬂ } next
linkedlist 1g| jh1 [Jha
<= _ prev
| removed

'

I--——————= 1

! |
per-thread | | bhy ||
linked list | |

(wait list) iinsertbh, to|

| T,'s wait list |

—_——— e ————

|
|
. -+ I
prev _ prev prev :
|

I
jinsert bh; to! |insert bhyto! |insert bhsto!
\To"s wait list | | T,'s wait list, | Ts's wait list

—_————————d —_————————d

| B N |
| bhg | i ! | bhs | i!]| bhs ||
by I I

| |

Experimental Setup

Hardware
= 72-core machine
= Four Intel Xeon E7-8870 processors (without hyperthreading)
= 16 GiB DRAM
= PCI 3.0 interface
= 800 GIiB Intel P3700 NVMe SSD (18-channels)
Software
= Linux kernel 4.9.1

= EXT4/IBD2
= An optimized EXT4 with parallel 1/0: P-EXT4
= Fully optimized EXT4: O-EXT4

Benchmarks
Tokubench (micro) Metadata-intensive (file creation) Files: 30,000,000, 1/O sizes: 4KiB
Sysbench (micro) Data-intensive (random write) Files: 72, Each file size: 1GiB, 1/O sizes: 4KiB

Metadata-intensive

(read/write ratio = 1:1) Files: 300,000, Directory width: 10,000

Varmail (macro)

: Data-intensive . : —
Fileserver (macro) (read/write ratio = 1:2) Files: 1,000,000, Directory width: 10,000

Performance Evaluation

= Tokubench

= QOrdered mode
= Improvement: upto 1.9x (P-EXT4), upto 2.2x (O-EXT4)
= Data journaling mode
= |mprovement: upto 1.73x (P-EXT4), upto 1.88x (O-EXT4)

OE-EXT4 mP-EXT4 (parallel /O) ®O-EXT4 (full) ODE-EXT4 mP-EXT4 (parallel /O) mO-EXT4 (full)
> 250 Z 250
2 I~
S 200 = 200
—
< 150 5 150
E 100 é 100
g 50 3
& 2 50
0 0
36 54 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Sysbench

= QOrdered mode
= Improvement: upto 13.8% (P-EXT4), upto 16.3% (O-EXT4)

= Data journaling mode
= |mprovement: upto 1.17x (P-EXT4), upto 2.1x (O-EXT4)

OE-EXT4 ®mP-EXT4 (parallel /O) ®mO-EXT4 (full) OE-EXT4 mP-EXT4 (parallel /0) mO-EXT4 (full)

g 2000 - 600
= 1500 & 500
= < 400
2 1000 = 300
R m m %200 d d d
a m £ 100

0 0

r 2 4 1 2 4 8

8 18 36 54 72 18 36 54 T2

The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Varmail

= QOrdered mode

= Improvement: upto 1.92x (P-EXT4), upto 2.03x (O-EXT4)
= Data journaling mode

= Improvement: upto 31.3% (P-EXT4), upto 39.3% (O-EXT4)

ODE-EXT4 mP-EXT4 (parallel /O0) mO-EXT4 (full) ODE-EXT4 ®mP-EXT4 (parallel /O) mO-EXT4 (full)
2 1000 700
o 400 2 600
2 S 500
g 600 :_.;’400
T 400 = 300
g m %200
" willl
@ = 100 m
[aa]
0 ’_. 0
1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72

The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Fileserver

= QOrdered mode

= Improvement: upto 4.3% (P-EXT4), upto 9.6% (O-EXT4)
= Data journaling mode

= Improvement: upto 1.45x (P-EXT4), upto 2.01x (O-EXT4)

OE-EXT4 mP-EXT4 (parallel /O) ®mO-EXT4 (full) DE-EXT4 mP-EXT4 (parallel /O) ®mO-EXT4 (full)
2 2000 2 1200
2 &
= 1600 S 1000
< 1200 = 800
. =
E 800 g o0
z S 400
=" ml g w0 g

0 0

1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

= Comparison with a scalable file system (SpanFS, ATC’15)

= QOrdered mode
= Improvement: upto 1.45x

= The performance of O-EXT4 is similar or slower than SpanFsS in the case of small
cores

= Data journaling mode
= [mprovement: upto 1.51x

-4-SpanFS -e-0-EXT4 -4=SpanFS =--0-EXT4

1000 1200

= 800 2 1000

= = 800
600 ~

g = 600

E 400 E 400

= 200 2 200
2 o

0 R0

1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode (varmail)

Performance Evaluation

= Experimental analysis

= EXT4 vs. P-EXT4
= Improvement
= Bandwidth: 16.3%, Write time: 15.7%
= EXT4vs. O-EXT4

= Improvement
= Bandwidth: 2.06x, Write time: 2.08x

Device-level BW 692 MB/s 805 MB/s 1426 MB/s
Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)
j_checkpoint_ mutex 17946 s (34.4%) 0 0
J_list_lock 6132 s (11.7%) 4890 s (10.8%) 0
j_state lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)
others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Device-level BW and total execution time of main locks in data journaling mode (sysbench)

Conclusion

Motivation and Background

= Data structures for transaction processing protected by non-scalable
locks

= Serialized 1/0 operations by a single thread

Approaches
= Concurrent updates on data structures
= Parallel I/O in a cooperative manner

Evaluation
= Ordered mode: up to 2.2x
= Data journaling mode: up to 2.1x

Future work

= Optimizing the locking mechanism for other resources such as file, pa
ge cache, etc

THANK YOU

for your

ATTENTION!

T |
e
() [PICSLAB

