
Y. Son, S. Kim, H. Y. Yeom, and H. Han§

Seoul National University, Korea

§Dongduk Women’s University, Korea

High-Performance Transaction Processing

in Journaling File Systems

Contents

 Motivation and Background

 Design and Implementation

 Evaluation

 Conclusion

Motivation and Background

 Storage technology

 High-performance storage devices (e.g., SSDs) provide low-latency,

high-throughput, and high I/O parallelism

High-Performance SSDs are widely used in

cloud platforms, social network services, and so on

Highly parallel SSD

(Samsung NVMe SSD)
Highly parallel SSD

(Intel NVMe SSD)

 Motivational evaluation for highly parallel SSDs

 The performance does not scale well or decreases as the number of

cores increases

Ordered mode Data journaling mode

Motivation and Background

Experimental Setup

72-cores / Intel P3700 / EXT4 file system

 Existing coarse-grained locking and I/O operations by a single

 thread in transaction processing

 Locks on transaction processing in EXT4/JBD2

 Total write time: 52220s (100%)

 j_checkpoint_mutex (mutex lock): 17946s (34.40%)

 j_list_lock (spin lock): 6140s (11.75%)

 j_state_lock (r/w lock): 102s (0.19%)

0 10000 20000 30000 40000 50000 60000

Seconds

others j_checkpoint_mutex j_list_lock j_state_lock

Execution time breakdown
72-cores / Intel P3700 / EXT4 data journaling

sysbench (72threads, total 72 GiB random write)

Hot lock

Hot lock

Motivation and Background

Motivation and Background

 Overall existing locking and I/O procedure

ap
p

bh1

fi
le

 s
y
st

em

st
o

ra
g

e

creat() write() write()

S

jh1 jh2 jh3

journal area original area

TxID: 1 (running)

ap
p

fi

le
 s

y
st

em

st
o

ra
g

e

write() creat()

S

jh1 jh2 jh3

journal area original area

TxID: 1 (committing)
ap

p

fi
le

 s
y
st

em

st
o

ra
g

e

creat() write() write()

journal area original area

TxID: 1 (checkpointing)

checkpoint

commit

application thread

journal thread

transaction buffer list

checkpoint list

jhx
journal head

bhx
buffer head

blocked

S

jh1 jh2 jh3

bh1

jh1 jh2 jh3

bh1 bh2 bh3

S

M

blocked

1 2

3

S spin lock (j_list_lock)

M
mutex lock (j_checkpoint_mutex)

Motivation and Background

 Coarse-grained locking limits scalability of multi-cores

 I/O operation by a single thread limits I/O parallelism of SSDs

S

jh1 jh2 jh3

insert

remove

fetch

Journaling list

(transaction buffer list or

checkpoint list)

Journaling list

(transaction buffer list or

checkpoint buffer list)
jh1 jh2 jh3

A batched and serialized I/O

Design and Implementation

 Goal

 Optimizing transaction processing (running, committing, checkpointing

) in journaling file systems

 Our schemes

 Concurrent updates on data structures

 Adopting lock-free data structures and operations using atomic instructions

 Lock-free linked list

 lock-free insert, remove, fetch

 Using atomic instructions

 atomic_add()/atomic_read()/atomic_set()/compare_and_swap()

 Parallel I/O in a cooperative manner

 Enabling application threads to the journal and checkpoint I/O operations

not blocking them

 Fetching buffers from the shared linked lists, issuing the I/Os, and

completing them in parallel

Design and Implementation

 Overall Proposed Schemes

ap
p

bh1

fi
le

 s
y
st

em

st
o

ra
g

e

creat() write() write()

jh1 jh2 jh3

journal area original area

Running (TxID: 1)

ap
p

fi

le
 s

y
st

em

st
o

ra
g

e

write() creat()

jh1 jh2 jh3

journal area original area

Committing (TxID: 1)
ap

p

fi
le

 s
y
st

em

st
o

ra
g

e

creat() write() write()

journal area original area

Checkpointing (TxID: 1)

checkpoint

commit

jh1 jh2 jh3

bh1

jh1 jh2 jh3

bh1 bh2 bh3

bh2 bh3

bh2 bh3

1 2

3

Concurrent updates

Concurrent updates

Parallel I/O

Parallel I/O

Concurrent updates

application thread

journal thread

transaction buffer list

checkpoint list

jhx
journal head

bhx
buffer head

S spin lock (j_list_lock)

M
mutex lock (j_checkpoint_mutex)

 Concurrent updates on data structures

 Concurrent insert operations

 Using atomic set instruction

1: add_buffer(jh, head, tail)

2: {

3: jh->prev = atomic_set(tail, jh);

4: if(jh->prev == NULL)

5: head = jh;

6: else

7: jh->prev->next = jh;

8: }

Design and Implementation

 Concurrent updates on data structures

 Concurrent remove operations (two-phase removal)

1: del_buffer(jh, head, tail)

2: {

3: atomic_set(jh->remove, remove);

4: jh->gc_prev = atomic_set(tail, jh);

5: if(jh->gc_prev == NULL)

6: head = jh;

7: else

8: jh->gc_prev->gc_next = jh;

9:}

Design and Implementation

journaling list

 Concurrent updates on data structures

 Concurrent fetch operations

1: journal_io_start(….)

2: {

3: while((jh = head) != NULL){

4: if(atomic_cas(head, jh, jh->next) != jh)

5: continue;

6: if(atomic_read(jh->removed) == removed)

7: continue;

8: submit_io(…);

9:}

Design and Implementation

 Parallel I/O operations in a cooperative manner

 Allowing the application threads to join the I/Os not blocking them

 Fetching buffers from the shared linked list concurrently

 Issuing the I/Os in parallel

 Completing the I/Os in parallel using per-thread list

Design and Implementation

Experimental Setup

 Hardware

 72-core machine

 Four Intel Xeon E7-8870 processors (without hyperthreading)

 16 GiB DRAM

 PCI 3.0 interface

 800 GiB Intel P3700 NVMe SSD (18-channels)

 Software

 Linux kernel 4.9.1

 EXT4/JBD2

 An optimized EXT4 with parallel I/O: P-EXT4

 Fully optimized EXT4: O-EXT4

 Benchmarks

Benchmarks Descriptions Parameters

Tokubench (micro) Metadata-intensive (file creation) Files: 30,000,000, I/O sizes: 4KiB

Sysbench (micro) Data-intensive (random write) Files: 72, Each file size: 1GiB, I/O sizes: 4KiB

Varmail (macro)
Metadata-intensive

(read/write ratio = 1:1)
Files: 300,000, Directory width: 10,000

Fileserver (macro)
Data-intensive

(read/write ratio = 1:2)
Files: 1,000,000, Directory width: 10,000

Performance Evaluation

 Tokubench

 Ordered mode

 Improvement: upto 1.9x (P-EXT4), upto 2.2x (O-EXT4)

 Data journaling mode

 Improvement: upto 1.73x (P-EXT4), upto 1.88x (O-EXT4)

Ordered mode

Data journaling mode

Performance Evaluation

 Sysbench

 Ordered mode

 Improvement: upto 13.8% (P-EXT4), upto 16.3% (O-EXT4)

 Data journaling mode

 Improvement: upto 1.17x (P-EXT4), upto 2.1x (O-EXT4)

Ordered mode

Data journaling mode

Performance Evaluation

 Varmail

 Ordered mode

 Improvement: upto 1.92x (P-EXT4), upto 2.03x (O-EXT4)

 Data journaling mode

 Improvement: upto 31.3% (P-EXT4), upto 39.3% (O-EXT4)

Ordered mode

Data journaling mode

Performance Evaluation

 Fileserver

 Ordered mode

 Improvement: upto 4.3% (P-EXT4), upto 9.6% (O-EXT4)

 Data journaling mode

 Improvement: upto 1.45x (P-EXT4), upto 2.01x (O-EXT4)

Ordered mode

Data journaling mode

Performance Evaluation

 Comparison with a scalable file system (SpanFS, ATC’15)

 Ordered mode

 Improvement: upto 1.45x

 The performance of O-EXT4 is similar or slower than SpanFS in the case of small

cores

 Data journaling mode

 Improvement: upto 1.51x

Ordered mode (varmail)

Data journaling mode (fileserver)

Performance Evaluation

 Experimental analysis

 EXT4 vs. P-EXT4

 Improvement

 Bandwidth: 16.3%, Write time: 15.7%

 EXT4 vs. O-EXT4

 Improvement

 Bandwidth: 2.06x, Write time: 2.08x

File systems EXT4 P-EXT4 O-EXT4

Device-level BW 692 MB/s 805 MB/s 1426 MB/s

Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)

j_checkpoint_mutex 17946 s (34.4%) 0 0

j_list_lock 6132 s (11.7%) 4890 s (10.8%) 0

j_state_lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)

others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Device-level BW and total execution time of main locks in data journaling mode (sysbench)

Conclusion

 Motivation and Background

 Data structures for transaction processing protected by non-scalable

locks

 Serialized I/O operations by a single thread

 Approaches

 Concurrent updates on data structures

 Parallel I/O in a cooperative manner

 Evaluation

 Ordered mode: up to 2.2x

 Data journaling mode: up to 2.1x

 Future work

 Optimizing the locking mechanism for other resources such as file, pa

ge cache, etc

