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Flash-based Solid State Drives 
 Replacement of HDDs 

• Flash Translation Layer (FTL) allows SSDs to maintain traditional block interface 
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Garbage Collection & WAF 
 Garbage Collection (GC) Overheads 

• Reclaiming space for empty blocks requires valid page copy 

• Media write amplified due to garbage collection 

• Shortens SSD lifetime and hampers performance 

 Write Amplification Factor (WAF) 

• Ratio of the actual media writes to the user I/O 
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Multi-stream 
 Managing data placement on a SSD with streams 

• Mapping data to separate stream by their life expectancy 

 Standardization status 

• T10 (SCSI) standard & NVME 1.3 “directives” 
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Multi-stream Cont’d 
 Data Placement Comparison 
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FStream 
 Motivation 

• We need easier, general method of stream 
assignment. 

• Block device layer has limited information about 
data lifetime. 

• File system metadata has different lifetime from 
user data, need be separated. 

 

 Our Approach 

• File system level stream assignment. 

• Separate streams for file system metadata, journal, 
and user data. 

• Implemented FStream in existing file systems. 

[1] 
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 EXT4 metadata and journaling 

• EXT4 on-disk layout: block groups with data and metadata related to it 

 

 

 

 
 

• EXT4 journal: write ordering in ‘data=ordered’ mode 

Ext4 
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Ext4Stream 
 Mount options 

 

• Journal-stream 

• Separate journal writes 
 

• Inode-stream 

• Separate inode writes 

 

• Dir-stream  

• Separate directory blocks 
 

• Misc-stream 

• Inode/block bitmap and group-descriptor 
 

• Fname-stream 

• Distinct stream to file(s) with specific names 
 

• Extn-stream 

• File-extension based stream 
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XFS 
 XFS metadata and journaling 

• Parallel metadata operations, metadata buffering (page cache not used) 

• Mixture of logical and physical journaling 

• Minimum inode update size is a chunk of 64 inodes. 
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XFStream 
 Mount options 

 

• Log-stream 

• Separate journal writes 
 

• Inode-stream 

• Separate inode writes 

 

• Fname-stream 

• Distinct stream to file(s) with specific names 
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Application Specific Data Separation 

Upon Write Request.. 

1) Writes to Commit Log 
      - For error recovery 

2) Writes to Memtable 
       - In memory space 

3) Returns success 

4) Data in Memtable are   

      flushed to SSTable 

5) SSTables go through compaction 
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 Stream for Cassandra’s commit log file. 

• Fname_stream option: commitlog-* 
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Experimental Setup 

 OS:  

• Linux kernel v4.5 with io-streamid support 
 

 System:  

• Dell PowerEdge R720 server with 32 cores and 32GB memory 
    

 SSD:  

• Samsung PM963 480GB with streams support 

 

 Benchmarks: 

• Filebench: Varmail & Fileserver 

• YCSB on Cassandra 
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Filebench Workload Analysis 
 Varmail 
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XFS 
Workload Conditions 
- Filled 80% of disk before test 

- Number of test files: 900,000 (14GB) 

- Varmail : fsync-intensive 

- Runtime: 2 hours 

 

XFS writes more inodes (random writes) than Ext4. 
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Filebench: Performance 
 Fstream achieved 5 ~ 35% performance improvements. 
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Filebench: WAF 
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 Fstream achieved WAF of close to one. 

 Ext4’s WAF < Ext4NJ’s WAF 

• Journal is written in a circular fashion, so is invalidated periodically. 
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YCSB on Cassandra Results 
 Data intensive workload 

• Load phase: 1KB record x 120 million inserts 

• Run phase: 1KB record x 80 million inserts 
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Conclusion and Acknowledgements 
 SSD Performance & Lifetime 

• The less FTL garbage collection overheads, the longer SSD lives and the faster SSD performs. 

 

 Streams: SSD interface for separating data with different lifetimes 

 

 FStream: stream assignment in file system 

• Separate streams for file system metadata, journal, and user data. 

• Provide filename and extension based user data separation. 

• Achieved 5~35% performance improvement and near 1 WAF for filebench. 
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