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Tintri VMstore Ecosystem
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Typical VM: several dozen files
Dynamic operation mix:

o ~70% reads

o ~30% writes

e ~0.1% other
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Generic Synchronous Replication
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Transparent Failover

Client

~ A

Storage System B

Storag tem A e Ptz

~



What to replicate? Alternatives considered

How user might configure
replication

Selected LUNs

Selected filesystem volumes

Whole system

Per-VM

Directory

Reason for rejecting

VMstore does not expose LUNs

We only have one filesystem

Forces users to replicate all data;
subtle complications to rest of system

Does not work well with transparent failover

This is what we did -- let users configure one
or more directories for replication, and
replicate all filesystem operations occurring on
files/subdirectories within these directories.



Major data path design challenges

Replicate writes
Replicate arbitrary filesystem operations
Resync efficiently: handle extended outages

Primary/Secondary integrity check



Replicating writes
Objective: minimize added latency

Requirements:

1. Never lose acknowledged writes.
2. Recover from crashes, disconnects, etc and converge to an identical state.



Filesystem Write Path
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Bookkeeping for in-flight writes

Objective: keep track of in-flight writes persistently for crash recovery
All operations tagged with sequence number (OSN)

NVRAM entries: data, plus <Fileld, Offset, Length, OSN>

Persistent metadata. For each replicated directory, keep a map of

OSN — <Fileld, Offset, Length>



Crash Recovery Example
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Crash Recovery Example (2)

Client
Write W1: {file1, offset1, len1}
Primary —
e J
Secondary S—

W1



Crash Recovery Example (3)
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Crash Recovery Example (4): Distributed Recovery
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Data Path 2: Operations Other Than Writes

Undo not possible (e.g., deletes & renames)
Less frequent: can afford higher overhead

Approach: two-phase commit
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Data Path 3: Resync
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Resync Timeline
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Resync Timeline
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Resync Timeline
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Data Path 4: Distributed integrity checking
Goal: verify that Primary & Secondary have identical content
Leverage existing per-file content checksum
Periodically and on demand (e.g. after resync):

1. Primary: temporarily pause incoming |/Os
2. Primary, Secondary: quiesce in-flight 1/Os
3. For eachfile,

a. Primary: extract logical file content checksum; send the checksum to Secondary
b. Secondary: extract local checksum; compare with value from Primary
i.  If different, preserve state & take Secondary out of sync



Lessons Learned



Lessons Learned

Integrity check: invaluable



Lessons Learned

Integrity check: invaluable

Automatic cluster failover: more important to customers than anticipated



Lessons Learned

Integrity check: invaluable
Automatic cluster failover: more important to customers than anticipated

Ease of use & flexibility: well received



Questions



Backup Slides



Example VM
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Network topology

Customer must ensure
that hosts at both sites
can reach whichever
VMstore is Primary, i.e.
whichever one exposes
the Cluster IP address for
a given replicated
directory. Typically this is
done via a stretched L2 or
L3 network.
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Configuration Example

Datastores hosted by a given
VMstore

10.10.10.5:/tintri
10.10.10.6:/tintri/alpha

10.10.10.7:/tintri/beta

Replicated?

No
Yes

Yes



Resync Semantics & Requirements

Primary takes Secondary out of sync if Secondary is down for >= ~30s
Primary continues to serve data and accept writes while out of sync
When Secondary comes back:

Replicate only new/changed data

Must discover & read this data efficiently

Must converge reasonably quickly



Resync algorithm

Primary decides to take Secondary out of sync, coordinates with quorum service to do this
Primary creates resync snapshots on all files in replicated directory

time passes...

When Secondary comes back,

1. Do distributed recovery; data comes from resync snapshots, not current content
2. Resync filesystem directory namespace, including deletions
3. Replicate changes to files that have resync snapshots
a. Content between (resync snapshot creation, current time) can be efficiently obtained

b. Do this in order of Fileld's ordered by creation time
c. increasing logical byte offset within each file
4. Simultaneously, synchronously replicate non-writes, and writes to files that are either
a. already resynced, or
b. created after resync began



Performance (1)

Workload 8KiB Writes 64KiB Writes 256Kib Writes
Throughput 43% 11% 6%

reduction with

sync repl

Disclaimer: old hardware; software may have improved subsequent to
taking these measurements



Performance (2)

Incremental improvements already made (~ +60% improvement over unoptimized
starting point for 8K writes):

e vectorized socket I/O (mainly write side)

e socket reads into large buffers, rather than per-message buffers. Generally,
remove mallocs on network input processing code paths

e increase thread priority of thread(s) reading from replication sockets. [There
are many threads in the system, around 1,000, and not many replication
socket reading threads.]

e more could be done



Latency Visualization
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i Tintri Global Center  virtual Machines VMstores = Service Groups = Pools Q  Alerts 8 Explore X admin
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Conceptual State Machine: Data Availability

1.
Initializing/
Resyncing



VMstore file-level snapshots
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