Logical Synchronous Replication in the
Tintri VMstore File System

Gideon Glass

gxglass@gmail.com

joint work with Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla, and
Sumedh Sakdeo

Outline

Background and Motivation (30%)
Major Technical Problems (60%)

Lessons Learned (10%)

Tintri VMstore Ecosystem

@ e \
VMware ESX ho

st

VM1

VM3

\\ VM2 /

Typical VM: several dozen files
Dynamic operation mix:

o ~70% reads

o ~30% writes

e ~0.1% other

Client view:
10.20.100.5:/tintri

/tintri

/tintri/VvMl/
/tintri/VM1/VM1.vmx
/tintri/VM1/VM1 .vmdk
/tintri/VMl1l/VMl-£flat.vmdk

/tintri/VM2/VM2 .vmx
/tintri/vVM2/VM2 .vmdk
/tintri/VM2/VM2-flat.vmdk

\\ssaussaussoy c o /

Generic Synchronous Replication

Client
1 - Write 4 - Ack

N

Q 2 - Replicated Write ~_
S
Primary Storage Secondary Storage
System (A) 3 - Ack System (B)

~ ~

Transparent Failover

Client

~ A

Storage System B

Storag tem A e Ptz

~

What to replicate? Alternatives considered

How user might configure
replication

Selected LUNs

Selected filesystem volumes

Whole system

Per-VM

Directory

Reason for rejecting

VMstore does not expose LUNs

We only have one filesystem

Forces users to replicate all data;
subtle complications to rest of system

Does not work well with transparent failover

This is what we did -- let users configure one
or more directories for replication, and
replicate all filesystem operations occurring on
files/subdirectories within these directories.

Major data path design challenges

Replicate writes
Replicate arbitrary filesystem operations
Resync efficiently: handle extended outages

Primary/Secondary integrity check

Replicating writes
Objective: minimize added latency

Requirements:

1. Never lose acknowledged writes.
2. Recover from crashes, disconnects, etc and converge to an identical state.

Filesystem Write Path

RPC/NFS
Receive
Sync Repl Sync Repl
Splitting Incoming
QoS QoS
Other Read/ Other Read/
Write Write
\\\\\\‘/// \\\\\\‘///
Sync repl Sync rep
handshake Ack
RPC/NFS

Response

Bookkeeping for in-flight writes

Objective: keep track of in-flight writes persistently for crash recovery
All operations tagged with sequence number (OSN)

NVRAM entries: data, plus <Fileld, Offset, Length, OSN>

Persistent metadata. For each replicated directory, keep a map of

OSN — <Fileld, Offset, Length>

Crash Recovery Example

Client

Primary

Secondary

Write W1: {file1, offset1, len1}

——
L]

Crash Recovery Example (2)

Client
Write W1: {file1, offset1, len1}
Primary —
e J
Secondary S—

W1

Crash Recovery Example (3)

Client

Write W1: {file1, offset1, len1}

Primary — * ’
[Now what? }

Crash and
recover

Secondary S—

W1

Crash Recovery Example (4): Distributed Recovery

Client

Write W1: {file1, offset1, len1}

Primary S — * O ‘ *

old(W1)

What writes do
you know about? \

{wiy

Secondary —— “\, *
LWt

Data Path 2: Operations Other Than Writes

Undo not possible (e.g., deletes & renames)
Less frequent: can afford higher overhead

Approach: two-phase commit

Primary Node Secondary Node

_ Receive the op, f—>{ Receive the op
validate the op and assign a OSN :

Failed - ¢ -
Reserve resources required for

-

(guaranteed execution
alidate and reserve
h 4) : resource for guaranteed
o] i Mirror Op: . P gt'on
Write to intent log and mirror the op '—/ Failed xecutl

Success

ROLL_BACK

5 , [Write to intent log]
COMMITTED

Wait for secondary
response

COMMITTED

ROLL_BACK
Y

Update intent log w/
ROLLED_BACK state

Commit to stable
storage/NVRAM

{ Execute op]

Commit to stable
storage/NVRAM

Send COMMITTED
to Primary

\—)[ACK client with success/error]

[End of Secondary]

[End of Primary execution | execution

Primary Node

Receive the op,
validate the op and assign a OSN
Failed - ¢
Reserve resources required for
guaranteed execution

|

\ 4

Write to intent log and mirror the op

] Mirror Op§

ROLL_BACK

Secondary Node

Receive the op

Failed

Wait for secondary
response

COMMITTED

ROLL_BACK

Y
Update intent log w/
ROLLED_BACK state

Commit to stable
storage/NVRAM

)

\—)[ACK client with success/error]

[End of Primary execution]

COMMITTED

alidate and reserve
resource for guaranteed
execution

Success

[Write to intent log]

{ Execute op]

Commit to stable
storage/NVRAM

Send COMMITTED
to Primary

End of Secondary
execution

Data Path 3: Resync

Client

Primary \

\

Secondary

Secondary
becomes
unavailable

Resync Timeline

Client

Primary

Secondary

N
A

Takes Secondary out of
sync. Resync snapshots
created.

Resync Timeline

Client

Primary

Secondary

Resync
Begins

1. Distributed recovery:
get Secondary identical
to Primary at T1

2. Filesystem
namespace
updates

Resync Timeline

Client

Primary \

Secondary

3. Data resynced
by reading
Delta(T1, now).

WAL

3

13

|

Data Path 4: Distributed integrity checking
Goal: verify that Primary & Secondary have identical content
Leverage existing per-file content checksum
Periodically and on demand (e.g. after resync):

1. Primary: temporarily pause incoming |/Os
2. Primary, Secondary: quiesce in-flight 1/Os
3. For eachfile,

a. Primary: extract logical file content checksum; send the checksum to Secondary
b. Secondary: extract local checksum; compare with value from Primary
i. If different, preserve state & take Secondary out of sync

Lessons Learned

Lessons Learned

Integrity check: invaluable

Lessons Learned

Integrity check: invaluable

Automatic cluster failover: more important to customers than anticipated

Lessons Learned

Integrity check: invaluable
Automatic cluster failover: more important to customers than anticipated

Ease of use & flexibility: well received

Questions

Backup Slides

Example VM

[it-tthal#bl$ cd hg
[it-tthal#bl$ 1s -latr
total 139272640

i
-
s
—rw-

drwxr-xr-x
drwxrwxrwx
-rw-r-—-r——
—rWXrwxr-x
—rWXrwxr-x
—rWXrwxr-x
—rWXrwxr-x
—rWXrwxr-x
—rWXrwxr-x
—rWXrwxr-x
—rwXrwxr-x

1

PRPRPRRPRRPPPBRPRERPRPRERRPBERERRPERRERPERRR

[

1
1
1
1
1
1
1
1
1
1
1
1
1
1

[

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[it-tthal#b]$ [

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

13

145496
8545125

257
34359738368
2147483648
187947
17454622
8215263
117440512

0

73

2767818
8684

594

4148

45

983552
6554112
4260352
131584
2294272

592

596

597

572

0

0

12546260

84

84

84

84

84

84

84

84
214748364800
69793218560
37580963840
16106127360

2014-12-10
2014-12-10
2014-12-10
2014-12-10
2014-12-10
2014-12-10
2014-12-10
2015-04-20
2015-06-08
2015-06-19
2015-06-19
2015-06-19
2015-06-19
2015-07-06
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2015-12-22
2016-05-20
2016-05-20
2016-05-27
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29
2016-05-29

16:51
16:51
16:51
16:51
16:51
16:54
17:06
15:28
15:27
16:27
16:27
16:27
16:27
14:58
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:54
09:33
11:57
11:05
15:17
15:17
15:17
15:17
15:17
15:17
15:17
15:17
15:17
15:17
15:17
15:17

hg-aux.xml
vmware-23. log
vmware-22. log

hg.vmxf
hg-a@cbeddf.vswp
hg_2-flat.vmdk
vmware-24. log
vmware-25. log
vmware-26.log
vmx-hg-2697719263-1. vswp
hg.vmx. lck
hg-a@cbeddf.hlog
vmware-27. log
hg.nvram

hg_2.vmdk

hg.vmx

hg.vmsd

hg-ctk.vmdk
hg_4-ctk.vmdk
hg_3-ctk.vmdk
hg_2-ctk.vmdk
hg_1-ctk.vmdk

hg.vmdk

hg_1.vmdk

hg_3.vmdk

hg_4.vmdk

=

vmware. log

. 1ck-788c100000000000
. Llck-678c100000000000
. lck-52d 090000000000
. Llck-47d090000000000
. lck-3cd 090000000000
. Llck-31df090000000000
. 1ck-2960010000000000
. lck-26dT090000000000
hg_4-flat.vmdk
hg_3-flat.vmdk
hg_1-flat.vmdk
hg-flat.vmdk

Network topology

Customer must ensure
that hosts at both sites
can reach whichever
VMstore is Primary, i.e.
whichever one exposes
the Cluster IP address for
a given replicated
directory. Typically this is
done via a stretched L2 or
L3 network.

Site A

host1

hest 2

host 2

N

A site
network

VM store A

10Ghps+, ==10 msRTT

'lf\r

low ba ndwidth
== 500ms RTT

quorum
service

Site B

host 4

host 5

host &

|

B site
network

|

VM store B

Configuration Example

Datastores hosted by a given
VMstore

10.10.10.5:/tintri
10.10.10.6:/tintri/alpha

10.10.10.7:/tintri/beta

Replicated?

No
Yes

Yes

Resync Semantics & Requirements

Primary takes Secondary out of sync if Secondary is down for >= ~30s
Primary continues to serve data and accept writes while out of sync
When Secondary comes back:

Replicate only new/changed data

Must discover & read this data efficiently

Must converge reasonably quickly

Resync algorithm

Primary decides to take Secondary out of sync, coordinates with quorum service to do this
Primary creates resync snapshots on all files in replicated directory

time passes...

When Secondary comes back,

1. Do distributed recovery; data comes from resync snapshots, not current content
2. Resync filesystem directory namespace, including deletions
3. Replicate changes to files that have resync snapshots
a. Content between (resync snapshot creation, current time) can be efficiently obtained

b. Do this in order of Fileld's ordered by creation time
c. increasing logical byte offset within each file
4. Simultaneously, synchronously replicate non-writes, and writes to files that are either
a. already resynced, or
b. created after resync began

Performance (1)

Workload 8KiB Writes 64KiB Writes 256Kib Writes
Throughput 43% 11% 6%

reduction with

sync repl

Disclaimer: old hardware; software may have improved subsequent to
taking these measurements

Performance (2)

Incremental improvements already made (~ +60% improvement over unoptimized
starting point for 8K writes):

e vectorized socket I/O (mainly write side)

e socket reads into large buffers, rather than per-message buffers. Generally,
remove mallocs on network input processing code paths

e increase thread priority of thread(s) reading from replication sockets. [There
are many threads in the system, around 1,000, and not many replication
socket reading threads.]

e more could be done

Latency Visualization

VIRTUAL MACHINES : OVERVIEW 4

M 10Ps MBps Latency ms Used GiB ~
Prit St
auto-esxvm352-dmilani-ttvm03--3 0 0.0 "m;;,,zwe
I Contention Flash Disk. Mirror
auto-esxvm352-dmilani-ttvm03-9 19 L 01 Goms [NN L0ms Il
29
load2 g 01 1s 0.1
352-dmil 034 19 0.1 oz 01
auto-esxvm3352-dmilani-ttvm B 08 - .
auto-esxvm352-dmilani-ttvm02-10 1] 0.0 0 0.1
N o .
"’ Tintri Virtual Machines VMstores Service Groups Pools
VIRTUAL MACHINES : OVERVIEW 4 :
VM 10PS MBps Latency ms Used GIB ~

auto-esxvm352-dmilani-ttvm03--3 0 0.0 0.1
Secondary Storage
ms I
auto-esxvm352-dmilani-ttvm03--9 18 0.1 Contention Flash Disk 0.1
| 00ms 28ms OOms
J
0.1

load2 7 0.1 25
0.7
auto-esxvm352-dmilani-ttvm03--4 19 0.1 ian = 0.1

i Tintri Global Center virtual Machines VMstores = Service Groups = Pools Q Alerts 8 Explore X admin

Service Groups / Add Service Group

MName & Description Set Policies H Directory Membership

Choose the VM membership of the group by directory.

Primary VMstore *
ttvm308 -

Director

/tintri/alpha

stinm sdirartorias ran ba-rnaad rabs 0F e et = v artive Nz |¥Ftha direct r A - o mc'll rraste # forvanr Crrrent! Aanly NFS with v anta o e s s .
Existir g directories can be used only | they don't have any active |/0s the airectory doesnt exist, we Il create it ror you. Lurrently, only MEs with vL.enter s supported

f‘ Tintri Global Center virtual Machines VMstores Service Groups Pools Q plerts ® Explore & admin

Service Groups / Add Service Group

Mame & Description Set Policies Directory Membership n Protection Configuration

ttym374

-

Cluster IP (Datastore)*

Netmask*

Conceptual State Machine: Data Availability

1.
Initializing/
Resyncing

VMstore file-level snapshots

Read() Write()

Current
snapshot
index

Live
index

Snapshot
att2

Snapshot
at t1

