
Logical Synchronous Replication in the
Tintri VMstore File System

Gideon Glass
gxglass@gmail.com

joint work with Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla, and
Sumedh Sakdeo

Outline
Background and Motivation (30%)

Major Technical Problems (60%)

Lessons Learned (10%)

Tintri VMstore Ecosystem

ESX host
ESX host

VMware ESX host

VM1
VM3

VM2

NFS v3

SSD SSDSSD

/tintri
/tintri/VM1/
/tintri/VM1/VM1.vmx
/tintri/VM1/VM1.vmdk
/tintri/VM1/VM1-flat.vmdk
…
/tintri/VM2/VM2.vmx
/tintri/VM2/VM2.vmdk
/tintri/VM2/VM2-flat.vmdk
…

Typical VM: several dozen files
Dynamic operation mix:

● ~70% reads
● ~30% writes
● ~0.1% other

Client view:
10.20.100.5:/tintri

Secondary Storage
System (B)

Client

Primary Storage
System (A)

1 - Write

3 - Ack

2 - Replicated Write

4 - Ack

Generic Synchronous Replication

Client

Storage System A Storage System B
(New Primary)

Transparent Failover

What to replicate? Alternatives considered
How user might configure
replication

Reason for rejecting

Selected LUNs VMstore does not expose LUNs

Selected filesystem volumes We only have one filesystem

Whole system Forces users to replicate all data;
subtle complications to rest of system

Per-VM Does not work well with transparent failover

Directory This is what we did -- let users configure one
or more directories for replication, and
replicate all filesystem operations occurring on
files/subdirectories within these directories.

Major data path design challenges
Replicate writes

Replicate arbitrary filesystem operations

Resync efficiently: handle extended outages

Primary/Secondary integrity check

Replicating writes
Objective: minimize added latency

Requirements:

1. Never lose acknowledged writes.
2. Recover from crashes, disconnects, etc and converge to an identical state.

Filesystem Write Path

1

2

3

4

5

RPC/NFS
Receive

Sync Repl
Splitting

QoS

Other Read/
Write

Sync repl
handshake

RPC/NFS
Response

Sync Repl
Incoming

QoS

Other Read/
Write

Sync repl
Ack

Bookkeeping for in-flight writes
Objective: keep track of in-flight writes persistently for crash recovery

All operations tagged with sequence number (OSN)

NVRAM entries: data, plus <FileId, Offset, Length, OSN>

Persistent metadata. For each replicated directory, keep a map of

OSN → <FileId, Offset, Length>

Crash Recovery Example
Client

Secondary

Primary

Write W1: {file1, offset1, len1}

Crash Recovery Example (2)
Client

Secondary

Primary

W1

Write W1: {file1, offset1, len1}

Crash Recovery Example (3)
Client

Secondary

Primary

W1

Now what?

Crash and
recover

Write W1: {file1, offset1, len1}

Crash Recovery Example (4): Distributed Recovery
Client

Secondary

Primary

W1

{W1}

old(W1)

What writes do
you know about?

Write W1: {file1, offset1, len1}

Data Path 2: Operations Other Than Writes
Undo not possible (e.g., deletes & renames)

Less frequent: can afford higher overhead

Approach: two-phase commit

Data Path 3: Resync
Client

Secondary

Primary

T0

Secondary
becomes
unavailable

Resync Timeline
Client

Secondary

Primary

T0

Takes Secondary out of
sync. Resync snapshots
created.

T1

Resync Timeline
Client

Secondary

Primary

T0

Resync
Begins

T3

T2

1. Distributed recovery:
get Secondary identical
to Primary at T1

2. Filesystem
namespace
updates

T1

Resync Timeline
Client

Secondary

Primary

T0 T3

3. Data resynced
by reading
Delta(T1, now).

T2T1

Data Path 4: Distributed integrity checking
Goal: verify that Primary & Secondary have identical content

Leverage existing per-file content checksum

Periodically and on demand (e.g. after resync):

1. Primary: temporarily pause incoming I/Os
2. Primary, Secondary: quiesce in-flight I/Os
3. For each file,

a. Primary: extract logical file content checksum; send the checksum to Secondary
b. Secondary: extract local checksum; compare with value from Primary

i. If different, preserve state & take Secondary out of sync

Lessons Learned

Lessons Learned
Integrity check: invaluable

Lessons Learned
Integrity check: invaluable

Automatic cluster failover: more important to customers than anticipated

Lessons Learned
Integrity check: invaluable

Automatic cluster failover: more important to customers than anticipated

Ease of use & flexibility: well received

Questions

Backup Slides

Example VM

Network topology

Customer must ensure
that hosts at both sites
can reach whichever
VMstore is Primary, i.e.
whichever one exposes
the Cluster IP address for
a given replicated
directory. Typically this is
done via a stretched L2 or
L3 network.

Configuration Example

Datastores hosted by a given
VMstore

Replicated?

10.10.10.5:/tintri No

10.10.10.6:/tintri/alpha Yes

10.10.10.7:/tintri/beta Yes

Resync Semantics & Requirements
Primary takes Secondary out of sync if Secondary is down for >= ~30s

Primary continues to serve data and accept writes while out of sync

When Secondary comes back:

Replicate only new/changed data

Must discover & read this data efficiently

Must converge reasonably quickly

Resync algorithm
Primary decides to take Secondary out of sync, coordinates with quorum service to do this

Primary creates resync snapshots on all files in replicated directory

time passes…

When Secondary comes back,

1. Do distributed recovery; data comes from resync snapshots, not current content
2. Resync filesystem directory namespace, including deletions
3. Replicate changes to files that have resync snapshots

a. Content between (resync snapshot creation, current time) can be efficiently obtained
b. Do this in order of FileId's ordered by creation time
c. increasing logical byte offset within each file

4. Simultaneously, synchronously replicate non-writes, and writes to files that are either
a. already resynced, or
b. created after resync began

Performance (1)

Workload 8KiB Writes 64KiB Writes 256Kib Writes

Throughput
reduction with
sync repl

43% 11% 6%

Disclaimer: old hardware; software may have improved subsequent to
taking these measurements

Performance (2)
Incremental improvements already made (~ +60% improvement over unoptimized
starting point for 8K writes):

● vectorized socket I/O (mainly write side)
● socket reads into large buffers, rather than per-message buffers. Generally,

remove mallocs on network input processing code paths
● increase thread priority of thread(s) reading from replication sockets. [There

are many threads in the system, around 1,000, and not many replication
socket reading threads.]

● more could be done

Latency Visualization

1.
Initializing/
Resyncing

2. In-Sync
3.

Secondary
Down

Conceptual State Machine: Data Availability

4. Primary
Down

(data not
available)

VMstore file-level snapshots

