
Improving Docker Registry Design based
on Production Workload Analysis

Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng,

Nannan Zhao, Dimitrios Skourtis, Amit S. Warke,
Heiko Ludwig, Dean Hildebrand, and Ali R. Butt

The	average	company	
QUINTUPLES	
its	Docker	usage	within	

9	MONTHS	

Source: Datadog

Containers will be a $2.7B market by 2020*

2

§  Containers accelerate software
development and distribution.

§  In 2017 alone, Docker adoption
went up by 40%.

§  Containers use in enterprise and
cloud infrastructure is expected to
grow much faster.

*http://bit.ly/2uryjDI	

Docker usage patterns remain a mystery

3

§  How are Docker containers used and managed?

§  How can we streamline Docker workflows?

§  How do we facilitate Docker performance analysis?

Our contribution: Characterization and
optimization of Docker workflow

4

§  Conduct a large-scale analysis of a real-world
Docker workload from geo-distributed IBM
container service

§  Provide insights and develop heuristics to
increase Docker performance

§  Develop an open source Docker workflow
analysis tool*
*	https://dssl.cs.vt.edu/drtp/	

Background: Docker container image

5

§  Container images are divided into layers.
§  The metadata file is called manifest.
§  Users create repositories to store images.
§  Images in a repository can have

different tags (versions). JSON

Layer

Layer

Layer

Manifest

Container
image

}

Redis	 CentOS	

v2.6

latest myOS

Background: Docker container image

6

§  Container images are divided into layers.
§  The metadata file is called manifest.
§  Users create repositories to store images.
§  Images in a repository can have

different tags (versions). JSON

Layer

Layer

Layer

Manifest

Container
image

}

Redis	 CentOS	

v2.6

latest myOS
<user,	repository,	tag>	

Background: Docker container registry

7

§  Docker container images are stored online
in Docker registry.

docker	push	 docker	pull	

§  Push image:
1.  HEAD layers
2.  POST/PUT layer
3.  PUT manifest

§  Pull image:
1.  GET manifest
2.  GET layers

Background: Docker container registry

8

§  Docker container images are stored online
in Docker registry.

docker	push	 docker	pull	

§  Push image:
1.  HEAD layers
2.  POST/PUT layer
3.  PUT manifest

§  Pull image:
1.  GET manifest
2.  GET layers

Significant	amount	of	a	container	startup	
time	is	spent	in	pulling	the	image	

The IBM Cloud Docker registry traces

9

§  Capture a diverse set of customers: individuals, small
& medium businesses, government institutions

§  Cover five geographical locations and seven
availability zones

§  Span 75 days and 38M requests that account for more
than ~181TB of data transferred

IBM Docker registry service

10

Five geographical locations constitute seven Availability Zones (AZ):

IBM	Cloud	Registry	architecture	

*The registry setup is identical, except prs and dev are only half the size of the other Azs.

IBM	Internal	
5.  Staging	(stg)	

	 Testing*	
6.  Prestaging	(prs)	
7.  Development	(dev)	

	

Production	
1.  Dallas	(dal)		
2.  London	(lon)	
3.  Frankfurt	(fra)	
4.  Sydney	(syd)	 Nginx

Object
store Registry

Broadcaster

Registry

Registry

Stats counter

11

Tracing methodology

§  Combined traces by matching the incoming
HTTP request identifier across the components

§  Removed redundant fields and anonymized
the traces

§  Collected data from Registry,
Nginx, and Broadcaster

§  Studied requests: GET, PUT, HEAD,
PATCH, POST

Registry

Broadcaster

Registry

Registry

Nginx

12

{	
				"host":	" ",	
				"http.request.duration":	0.879271282,	
				"http.request.method":	"GET",	
				"http.request.remoteaddr":	" ",	
				"http.request.uri":	"v2/ / /blobs/ ",	
				"http.request.useragent":	"docker/17.04.0-ce	go/go1.7.5..)",	
				"http.response.status":	200,	
				"http.response.written":	1518,	
				"id":	" ",	
				"timestamp":	"2017-07-01T01:39:37.098Z"	
}	

Anonymized log sample

13

Q1: What is the distribution of request types?

0%	
20%	
40%	
60%	
80%	

100%	

da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

pull	 push	
	80%–95%	of	requests	are	reads	(pulls)	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

0%	

20%	

40%	

60%	

80%	

100%	

dal	 lon	 fra	 syd	 stg	 prs	 dev	

Re
qu

es
ts
	

GET	 POST	 HEAD	 PUT	 PATCH	

14

Q1: What is the distribution of request types?

	60%	of	the	requests	are	GET	and	10%–22%	are	HEAD		requests	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

15

Q2: What is the manifest size distribution?

Typical	manifest	size	is	around	1	KB	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

16

Q3: What is the layer size distribution?
	65%	of	the	layers	are	smaller	than	1	MB	and	

around	80%	are	smaller	than	10	MB	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

17

Q3: What is the layer size distribution?
	65%	of	the	layers	are	smaller	than	1	MB	and	

around	80%	are	smaller	than	10	MB	

There	is	a	significant	opportunity	for	
caching	the	layers	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

18

Q4: Is there spatial locality?
1%	of	most	accessed	layers	account	for	42%	and	59%	of	

all	requests	in	dal	and	syd,	respectively	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

19

Q4: Is there spatial locality?

0%	

5%	

10%	

15%	

20%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	
stg	 prs	 dev	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

The	popularity	rate	drops	rapidly	as	we	move	from	
most	popular	to	tenth	most	popular	layer	

20

Q5: Can future requests be predicted?

	GET	manifest	requests	are	not	followed	
by	any	subsequent	GET	layer	request	 Production:	dal,	lon,	fra,	syd	

IBM	internal:	stg	
Testing:	prs,	dev	

21

Q5: Can future requests be predicted?
	Significant	increase	in	subsequent	GET		

layer	requests	within	a	session	
Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

22

Q5: Can future requests be predicted?
	Significant	increase	in	subsequent	GET		

layer	requests	within	a	session	

Strong	correlation	between	requests	
à	GET	layers	requests	can	be	predicted	
à	opportunity	for	layer	prefetching	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	

23

Enabling further analysis: Trace re-player

Client 1

Master Client 2

Client 3

Registry

Trace Round Robin/
Hashing (client remote address)

	Performance	analysis	mode	

	Offline	analysis	mode	

§  Study throughput and latency
§  Understand effect of CPU,

Memory, Storage, Network

§  Simulate prefetching and caching policies
§  Explore cache efficacy

	Additional	analysis	
§  Analyze request arrival rate at user define granularity
§  Study effect of deduplication on registry size

24

Effect of backend storage technologies

10210 103 104 105 106 107 108 109

Experimental setup:

§  Registry on 32 core machine with 64 GB RAM and 512 GB SSD

§  Swift object store on 10 similar nodes

§  Trace re-player on 6 additional nodes

25

Effect of backend storage technologies

10210 103 104 105 106 107 108 109

Experimental setup:

§  Registry on 32 core machine with 64 GB RAM and 512 GB SSD

§  Swift object store on 10 similar nodes

§  Trace re-player on 6 additional nodes Fast	backend	storage/cache	for	the	registry	can	
significantly	improve	the	overall	performance	

26

Effect of a two-level Main Memory+SSD cache

Experimental setup:
§  Small layers (<100 MB) are stored in the main memory
§  Replacement policy for both cache level is LRU
§  Studied cache sizes:

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress
SSD: 10x, 15x, 20x the size of RAM cache

§  Layers are content addressable
à cache invalidation is not a problem

27

Two-level cache: Main memory+SSD

0	
0.2	
0.4	
0.6	
0.8	
1	

2%	 4%	 6%	 8%	 10%	

hi
t	r
at
io
	

data	ingress	

LRU:mem	 LRU:mem+SSD(10x)	

LRU:mem+SSD(15x)	 LRU:mem+SSD(20x)	

Dallas	

28

Benefit of layer prefetching

 PUT layer GET manifest GET layer
 LMthresh MLthresh

0	
3	
6	
9	
12	

1h	 12h	 1d	

hi
ts
/p
re
fe
tc
h	

LM	thresh	

ML-thresh:1	hour	 ML-thresh:12	hours	 ML-thresh:1	day	

29

Summary

§  We perform a quantitative characterization of a production
Docker registry deployment
§  Registry workload is read intensive
§  Layers sizes are small
§  Strong correlation exists between layer requests

§  We propose effective caching and prefetching strategies
for container layers

§  We enable further Docker investigation and optimization by
making our traces and the trace re-player tool open
source*

*	https://dssl.cs.vt.edu/drtp/	

30

Thank You!

Questions & contact: Ali	Anwar,	ali@vt.edu	

https://dssl.cs.vt.edu/	

