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The	average	company	
QUINTUPLES	
its	Docker	usage	within	

9	MONTHS	

Source: Datadog 

Containers will be a $2.7B market by 2020* 
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§  Containers accelerate software 
development and distribution. 

§  In 2017 alone, Docker adoption 
went up by 40%. 

§  Containers use in enterprise and 
cloud infrastructure is expected to 
grow much faster. 

*http://bit.ly/2uryjDI	



Docker usage patterns remain a mystery 
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§  How are Docker containers used and managed? 

§  How can we streamline Docker workflows? 

§  How do we facilitate Docker performance analysis? 



Our contribution: Characterization and 
optimization of Docker workflow 
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§  Conduct a large-scale analysis of a real-world 
Docker workload from geo-distributed IBM 
container service 

§  Provide insights and develop heuristics to 
increase Docker performance 

§  Develop an open source Docker workflow 
analysis tool* 
*	https://dssl.cs.vt.edu/drtp/	



Background: Docker container image 
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§  Container images are divided into layers. 
§  The metadata file is called manifest. 
§  Users create repositories to store images. 
§  Images in a repository can have 

different tags (versions). JSON
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§  Container images are divided into layers. 
§  The metadata file is called manifest. 
§  Users create repositories to store images. 
§  Images in a repository can have 

different tags (versions). JSON
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Background: Docker container registry 
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§  Docker container images are stored online 
in Docker registry. 

docker	push	 docker	pull	

§  Push image: 
1.  HEAD layers 
2.  POST/PUT layer 
3.  PUT manifest 

§  Pull image: 
1.  GET manifest 
2.  GET layers 



Background: Docker container registry 

8 

§  Docker container images are stored online 
in Docker registry. 

docker	push	 docker	pull	

§  Push image: 
1.  HEAD layers 
2.  POST/PUT layer 
3.  PUT manifest 

§  Pull image: 
1.  GET manifest 
2.  GET layers 

Significant	amount	of	a	container	startup	
time	is	spent	in	pulling	the	image	



The IBM Cloud Docker registry traces 
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§  Capture a diverse set of customers: individuals, small 
& medium businesses, government institutions 

§  Cover five geographical locations and seven 
availability zones 

§  Span 75 days and 38M requests that account for more 
than ~181TB of data transferred 



IBM Docker registry service 
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Five geographical locations constitute seven Availability Zones (AZ): 

IBM	Cloud	Registry	architecture	

*The registry setup is identical, except prs and dev are only half the size of the other Azs. 

IBM	Internal	
5.  Staging	(stg)	

	 Testing*	
6.  Prestaging	(prs)	
7.  Development	(dev)	

	

Production	
1.  Dallas	(dal)		
2.  London	(lon)	
3.  Frankfurt	(fra)	
4.  Sydney	(syd)	 Nginx 

Object 
store Registry 

Broadcaster 

Registry 

Registry 

Stats counter 
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Tracing methodology 

§  Combined traces by matching the incoming 
HTTP request identifier across the components  

§  Removed redundant fields and anonymized  
the traces 

§  Collected data from Registry, 
Nginx, and Broadcaster 

§  Studied requests: GET, PUT, HEAD, 
PATCH, POST 

Registry 

Broadcaster 

Registry 

Registry 

Nginx 
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{	
				"host":	" ",	
				"http.request.duration":	0.879271282,	
				"http.request.method":	"GET",	
				"http.request.remoteaddr":	" ",	
				"http.request.uri":	"v2/ / /blobs/ ",	
				"http.request.useragent":	"docker/17.04.0-ce	go/go1.7.5..)",	
				"http.response.status":	200,	
				"http.response.written":	1518,	
				"id":	" ",	
				"timestamp":	"2017-07-01T01:39:37.098Z"	
}	

Anonymized log sample 
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Q1: What is the distribution of request types? 
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Q1: What is the distribution of request types? 

	60%	of	the	requests	are	GET	and	10%–22%	are	HEAD		requests	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	
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Q2: What is the manifest size distribution? 

Typical	manifest	size	is	around	1	KB	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	
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Q3: What is the layer size distribution? 
	65%	of	the	layers	are	smaller	than	1	MB	and	

around	80%	are	smaller	than	10	MB	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	



17 

Q3: What is the layer size distribution? 
	65%	of	the	layers	are	smaller	than	1	MB	and	

around	80%	are	smaller	than	10	MB	

There	is	a	significant	opportunity	for	
caching	the	layers	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	
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Q4: Is there spatial locality? 
1%	of	most	accessed	layers	account	for	42%	and	59%	of	

all	requests	in	dal	and	syd,	respectively	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	
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Q4: Is there spatial locality? 
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most	popular	to	tenth	most	popular	layer	
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Q5: Can future requests be predicted? 

	GET	manifest	requests	are	not	followed	
by	any	subsequent	GET	layer	request	 Production:	dal,	lon,	fra,	syd	

IBM	internal:	stg	
Testing:	prs,	dev	
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Q5: Can future requests be predicted? 
	Significant	increase	in	subsequent	GET		

layer	requests	within	a	session	
Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	
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Q5: Can future requests be predicted? 
	Significant	increase	in	subsequent	GET		

layer	requests	within	a	session	

Strong	correlation	between	requests	
à	GET	layers	requests	can	be	predicted	
à	opportunity	for	layer	prefetching	

Production:	dal,	lon,	fra,	syd	
IBM	internal:	stg	
Testing:	prs,	dev	



23 

Enabling further analysis: Trace re-player 

Client 1 

Master Client 2 

Client 3 

Registry 

Trace Round Robin/ 
Hashing (client remote address)  

	Performance	analysis	mode	

	Offline	analysis	mode	

§  Study throughput and latency  
§  Understand effect of CPU, 

Memory, Storage, Network 

§  Simulate prefetching and caching policies 
§  Explore cache efficacy 

	Additional	analysis	
§  Analyze request arrival rate at user define granularity 
§  Study effect of deduplication on registry size 
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Effect of backend storage technologies 

10210 103 104 105 106 107 108 109

Experimental setup: 

§  Registry on 32 core machine with 64 GB RAM and 512 GB SSD 

§  Swift object store on 10 similar nodes 

§  Trace re-player on 6 additional nodes 
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Effect of backend storage technologies 

10210 103 104 105 106 107 108 109

Experimental setup: 

§  Registry on 32 core machine with 64 GB RAM and 512 GB SSD 

§  Swift object store on 10 similar nodes 

§  Trace re-player on 6 additional nodes Fast	backend	storage/cache	for	the	registry	can	
significantly	improve	the	overall	performance	
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Effect of a two-level Main Memory+SSD cache 

Experimental setup: 
§  Small layers  (<100 MB) are stored in the main memory 
§  Replacement policy for both cache level is LRU 
§  Studied cache sizes:  

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress 
SSD: 10x, 15x, 20x the size of RAM cache 

§  Layers are content addressable  
à cache invalidation is not a problem 
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Two-level cache: Main memory+SSD 
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Benefit of layer prefetching 

 PUT layer             GET manifest              GET layer 
       LMthresh     MLthresh 
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Summary 

§  We perform a quantitative characterization of a production 
Docker registry deployment 
§  Registry workload is read intensive 
§  Layers sizes are small 
§  Strong correlation exists between layer requests 

§  We propose effective caching and prefetching strategies 
for container layers 

§  We enable further Docker investigation and optimization by 
making our traces and the trace re-player tool open 
source* 

*	https://dssl.cs.vt.edu/drtp/	
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Thank You! 

Questions & contact: Ali	Anwar,	ali@vt.edu	

https://dssl.cs.vt.edu/	


