Flash Reliability in Production: The Expected and the Unexpected

Bianca Schroeder University of Toronto

Raghav Lagisetty, Arif Merchant Google Inc.

Flash reliability

Why flash?

- More and more data is living on flash
 - => data reliability depends on flash reliability
- Worry about flash wear-out

Little prior work on production systems

- Lab studies using accelerated testing
- Only one field study (Sigmetrics'15)

The data

Drive replacements

 Percentage of drives replaced annually due to suspected hardware problems over the first 4 years in the field:

- ~1-2% of drives replaced annually, much lower than hard disks!
- 0.5-1.5% of drives developed bad chips per year
 - Would have been replaced without methods for tolerating chip failure

Errors experienced during a drive's lifecycle

Transparent errors	Correctable error
	Read retry
	Write retry
	Erase error
Non-transparent errors	Uncorrectable error
	Final write error
	Meta error
	Timeout error
No	

Errors experienced during a drive's lifecycle

Non-transparent errors common:

- 26-60% of drives with uncorrectable errors
- 2-6 out of 1,000 drive days experience uncorrectable errors
- Much worse than for hard disk drives (3.5% experiencing sector errors)!

What factors impact flash reliability?

- Wear-out (limited program erase cycles)
- Technology (MLC, SLC)
- Lithography
- Age
- Workload

- What reliability metric to use?
 - Raw bit error rate (RBER)
 - Probability of uncorrectable errors
 - Why not UBER? We shall see ...

Effect of wear-out (program erase cycles)

Common expectation: Exponential increase of RBER with PE cycles

Effect of wear-out (program erase cycles)

- Big differences across models (despite same ECC)
- Linear rather than exponential increase
- No sudden increase after PE cycle limit

Effect of type of flash (SLC versus MLC)

Common expectation:

Lower error rates under SLC (\$\$\$) than MLC

Effect of type of flash (SLC versus MLC)

- RBER is lower for SLC drives than MLC drives
- Uncorrectable errors are not consistently lower for SLC drives
- SLC drives don't have lower rate of repairs or replacement

Common expectation: Higher error rates for smaller feature size

Effect of lithography

- Smaller lithography => higher RBER
- Lithography has no clear impact on uncorrectable errors

Effect of age (time in production)?

Age has an effect beyond PE-cycle induced wear-out

Effect of workload?

- Lab studies demonstrate workload induced error modes
 - Read disturb errors
 - Program disturb errors
 - Incomplete erase operations

Evidence of read disturb affecting RBER for some models

- No effect of erases and writes
- Workload does not affect <u>uncorrectable errors</u>
 - UBER (uncorrectable bit error rate) is not a meaningful metric

Other factors

- Different RBER for same model in different clusters
- Other factors at play ...

RBER and overall reliability

- The main purpose of RBER is as a metric for overall drive reliability
- Allows for projections on uncorrectable errors

RBER and uncorrectable errors

Median RBER of drive

- Drives (or drive days) with higher RBER don't have higher frequency of uncorrectable errors
- RBER is not a good predictor of field reliability
- Uncorrectable errors caused by other mechanisms than corr. errors?

What is predictive of uncorrectable errors?

Prior errors highly predictive of later uncorrectable errors

Potential for prediction?

Flash reliability – key points

- Significant rate of non-transparent errors
 - Higher than hard disk drives
 - To some degree predictable
 - Need to protect against those!
- Many aspects different from expectations
 - Linear rather than exponential increase with PE cycles
 - RBER not predictive of non-transparent errors
 - SLC not generally more reliable than MLC
- Many other results not covered in talk ...
 - Bad chips, bad blocks, factory bad blocks, rate of repair and replacement, comparison of projections with field RBER, ...