
Towards Accurate and Fast Evaluation of
Multi-Stage Log-Structured Designs

Hyeontaek Lim

David G. Andersen, Michael Kaminsky†

Carnegie Mellon University

†Intel Labs

Multi-Stage Log-Structured (“MSLS”) Designs

2

(Naïve) Log-structured design
➪ Fast writes with sequential I/O

Compaction
➪ Fewer table count
➪ Less space use
➪ Heavy I/O required

Multi-stage design
➪ Cheaper compaction

by segregating fresh and old data

➪ Slow query speed
➪ Large space use

Example: LevelDB, RocksDB,
Cassandra, HBase, … Y X X

Item inserts

X Y
Sorted table

X Z

Sorted table

X Y Z
Merged sorted table

X Y

Sorted table

fresh

old old old

Sorted in memory Written sequentially

MSLS Design Evaluation Needed

3

Mobile app Filesystem Desktop app Data-intensive
computing

Diverse workloads
Large design space

Many tunable knobs

Problem: How to evaluate and tune MSLS designs for a workload?

Two Extremes of Prior MSLS Evaluation

4

Speed

Accuracy

Asymptotic Analysis
of core algorithms

(e.g., O(log N) I/Os per insert)

Experiment
using full implementation

(e.g., 12 k inserts per second)

Want: Accurate and fast evaluation method

What You Can Do With Accurate and Fast Evaluation

5

Initial
system

parameters
System

performance
evaluator

Optimized
system

parameters

New
system

parameters

Generic
numerical
optimizer

Our level size optimization on LevelDB
• Up to 26.2% lower per-insert cost, w/o sacrificing query performance
• Finishes in 2 minutes (full experiment would take years)

Executed 16,000+ times! E.g., “level sizes” in LevelDB

“Adjust level sizes for
higher performance”

Accurate and Fast Evaluation of MSLS Designs

6

Analytically model multi-stage log-structured designs
using new analytic primitives that consider redundancy

 Accuracy: Only ≤ 3–6.5% off from LevelDB/RocksDB experiment

 Speed: < 5 ms per run for a workload with 100 M unique keys

Performance Metric to Use

7

(Application-level) Write amplification

Size of data written to flash/disk (B)
Size of inserted data (A)

• Easier to analyze than raw throughput
• Closely related to raw throughput:

write amplification ∝ 1/throughput

Focus of this talk: Insert performance of MSLS designs
• Often bottlenecked by writes to flash/disk
• Need to model amortized write I/O of inserts

MSLS

Flash/disk

User application

B

A =

Divide-and-Conquer to Model MSLS Design

8

MSLS Design

Table creation

1. Break down MSLS design
into small components

2. Model individual components’
write amplification

3. Add all components’
write amplification

Compaction

WAtblcreation WAcompaction

WAtblcreation + WAcompaction

Modeling Cost of Table Creation: Strawman

Y B X A X

5 item inserts

B X Y A
Sorted table containing 4 items

Write amplification of this table creation event =
4
5

9

Must keep track of
individual item inserts

Must perform
redundant key removal

Modeling Cost of Table Creation: Better Way

Unique(bufsize): expected # of unique keys in bufsize requests

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?

10

bufsize (max # of inserts buffered in memory)

Write amplification of regular table creation =
Unique(bufsize)

…

…

✓ No item-level information required
✓ Estimates general operation cost

? ? ? ? ?

? ? ? ? ?

bufsize

Modeling Cost of Compaction: Strawman

11

C X A B
Input

sorted table1

C X Y Z A B
Merged sorted table containing 6 items

X Y Z
Input

sorted table2

A X B A C Y Z X X Z

10 item inserts

Write amplification of this compaction event =
6

Must keep track of
original item inserts

Must perform
redundant key removal

10

Unique-1(tblsize2): expected # of requests
 containing tblsize2 unique keys
 i.e., Unique(Unique-1(tblsize2))
 = tblsize2

Modeling Cost of Compaction: Better Way

12

? ? ? ? tblsize1

? ? ? ? ? ?

? ? ? tblsize2

? ? ? ? ? ? ? ? ? ?

Unique-1(tblsize1)

Merge(tblsize1, tblsize2): expected # of unique keys in input tables
 whose sizes are tblsize1 and tblsize2

Write amplification of 2-way compaction =
Merge(tblsize1, tblsize2)

✓ No item-level information required
✓ Estimates general operation cost

Unique-1(tblsize1) + Unique-1(tblsize2)

New Analytic Primitives Capturing Redundancy

13

Unique-1: [# of requests] ← [# of unique keys]

Merge: [multiple # of unique keys] → [total # of unique keys]

• Fast to compute (see paper for mathematical descriptions)
• Consider redundancy: Unique(p) ≤ p Merge(u, v) ≤ u + v
• Reflect workload skew: [Unique(p) for Zipf] ≤ [Unique(p) for uniform]

• Caveat: Assume no or little dependence between requests

Unique: [# of requests] → [# of unique keys]

High Accuracy of Our Evaluation Method

14

Compare measured/estimated write amplification of insert requests on LevelDB
• Key-value item size: 1,000 bytes
• Unique key count: 1 million–1 billion (1 GB–1 TB)
• Key popularity dist.: Uniform

0

10

20

30

40

50

60

1 M 3.3 M 10 M 33 M 100 M 330 M 1 B

Our analysis
Accurate estimation

(≤ 3% error)

Unique key count

Write amplification
Worst-case analysis

Overestimation

Full LevelDB implementation

Our lightweight in-memory
LevelDB simulation

High Speed of Our Evaluation Method

15

Compare single-run time to obtain write amplification of insert requests
 for a specific workload using a single set of system parameters
• LevelDB implementation: fsync disabled
• LevelDB simulation: in-memory, optimized for insert processing

Method
Workload size

(# of unique keys)
Elapsed time

Experiment using
LevelDB implementation

10 M 101 minutes

Experiment using
LevelDB simulation

100 M 45 minutes

Our analysis 100 M < 5 ms

Summary
• Evaluation method for multi-stage log-structured designs

• New analytic primitives that consider redundancy

• System models using new analytic primitives

• Accurate and fast
• Only ≤ 3–6.5% error in estimating insert cost of LevelDB/RocksDB

• Several orders of magnitude faster than experiment

• Example applications
• Automatic system optimization (~26.2% faster inserts on LevelDB)

• Design improvement (~32.0% faster inserts on RocksDB)

• Code: github.com/efficient/msls-eval

16

Backup Slides

17

X

Sorted table

X Y
Merged sorted table

X Y

Sorted table

Nature of MSLS Operations

18

Only one instance survives for each key

Table creation and compaction:
essentially redundancy removal
➪ Modeling operation cost requires

considering redundancy

Y X X

Item inserts

X Y
Sorted table

Write Amplification vs. Throughput

19

Compare measured write amplification/throughput of insert requests on LevelDB
• Key-value item size: 1,000 bytes
• Unique key count: 1 million–10 million (1 GB–10 GB)
• Key popularity dist.: Uniform, Zipf (skew=0.99)

Mathematical Description of New Primitives

20

Unique-1: [# of requests] ← [# of unique keys]

Merge: [multiple # of unique keys] → [total # of unique keys]
 Merge(u, v) = Unique(Unique-1(u) + Unique-1(v))

Unique: [# of requests] → [# of unique keys]

Unique 𝑝 ≔ 𝑁 − 1− 𝑓𝑋 𝑘
𝑝

𝑘∈𝐾

of requests

Total # of unique keys (|𝐾|)

Set of unique keys

Probability of key 𝑘 in each request
for a key popularity distribution

Unique as a Function of Request Count

21

Uniform key popularity

Skewed key popularity

Compare measured write amplification/throughput of insert requests on LevelDB
• Key-value item size: 1,000 bytes
• Unique key count: 100 M (100 GB)
• Request count: 0–1 billion
• Key popularity dist.: Uniform, Zipf (skew=0.99)

LevelDB Design Overview

22

Level 1

Level 2

Level 3

Level 4

Key space

(Omitted: memtable, write-ahead log, level 0)

Each level are partitioned
into small tables (~2 MB)

for incremental compaction

Each level’s total size
= ~10X previous level’s

Table to
compact

Overlapping tables Merged tables

Q: Average # of overlaps?

➪ Less than 10!
(“non-uniformity”)

Non-Uniformity in LevelDB

23

Level l-1

Level l

Level l+1

Key space

(Omitted: memtable, write-ahead log, level 0)

Fast to sweep small level
➪ Add new data to

next level uniformly
across key space

Slow to sweep large level
➪ Soon-to-be-compacted

region becomes dense,
causing non-uniformity

➪ Fewer overlapping
tables in next level

Just
compacted

Soon to be
compacted

Direction of compaction in key space (round-robin way)

 1 // @param L maximum level
 2 // @param wal write-ahead log file size
 3 // @param c0 level-0 SSTable count
 4 // @param size level sizes
 5 // @return write amplification (per-insert cost)
 6 function estimateWA_LevelDB(L, wal, c0, size[]) {
 7 local l, WA, interval[], write[];
 8
 9 // mem -> log
10 WA = 1;
11
12 // mem -> level-0
13 WA += unique(wal) / wal;
14
15 // level-0 -> level-1
16 interval[0] = wal * c0;
17 write[1] = merge(unique(interval[0]), size[1]);
18 WA += write[1] / interval[0];
19
20 // level-l -> level-(l+1)
21 for (l = 1; l < L; l++) {
22 interval[l] = interval[l-1] + dinterval(size, l);
23 write[l+1] = merge(unique(interval[l]), size[l+1]) + unique(interval[l]);
24 WA += write[l+1] / interval[l];
25 }
26
27 return WA;
28 }

24

LevelDB-specific function
to take into account “non-uniformity”

Pseudo Code of
LevelDB Model

Sensitivity to Workload Skew

25

Compare measured/estimated write amplification of insert requests on LevelDB
• Key-value item size: 1,000 bytes
• Unique key count: 1 million–1 billion (1 GB–1 TB)
• Key popularity dist.: Zipf (skew=0.99)

0

10

20

30

40

50

60

1 M 3.3 M 10 M 33 M 100 M 330 M 1 B
Unique key count

Write amplification

LevelDB impl/simul

Our analysis
Accurate estimation

Worst-case analysis
Workload skew ignored

Automatic System Optimization Result

26

Compare measured/estimated write amplification of insert requests on LevelDB
• Key-value item size: 1,000 bytes
• Write buffer size: 4 MiB–[10% of total unique key count]
• Unique key count: 10 million (10 GB)
• Key popularity dist.: Uniform, Zipf (skew=0.99)

End of Slides

27

