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Multi-Stage Log-Structured (“MSLS”) Designs 
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(Naïve) Log-structured design 
➪ Fast writes with sequential I/O 

Compaction 
➪ Fewer table count 
➪ Less space use 
➪ Heavy I/O required 

Multi-stage design 
➪ Cheaper compaction 

by segregating fresh and old data 

➪ Slow query speed 
➪ Large space use 

Example: LevelDB, RocksDB, 
Cassandra, HBase, … Y X X 

Item inserts 

X Y 
Sorted table 

X Z 

Sorted table 

X Y Z 
Merged sorted table 

X Y 

Sorted table 

fresh 

old old old 

Sorted in memory     Written sequentially 



MSLS Design Evaluation Needed 
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Mobile app Filesystem Desktop app Data-intensive 
computing 

Diverse workloads 
Large design space 

Many tunable knobs 

Problem: How to evaluate and tune MSLS designs for a workload? 



Two Extremes of Prior MSLS Evaluation 
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Speed 

Accuracy 

Asymptotic Analysis 
of core algorithms 

(e.g., O(log N) I/Os per insert) 

Experiment 
using full implementation 

(e.g., 12 k inserts per second) 

Want: Accurate and fast evaluation method 



What You Can Do With Accurate and Fast Evaluation 
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Initial 
system 

parameters 
System 

performance 
evaluator 

Optimized 
system 

parameters 

New 
system 

parameters 

Generic 
numerical 
optimizer 

Our level size optimization on LevelDB 
• Up to 26.2% lower per-insert cost, w/o sacrificing query performance 
• Finishes in 2 minutes (full experiment would take years) 

Executed 16,000+ times! E.g., “level sizes” in LevelDB 

“Adjust level sizes for 
higher performance” 



Accurate and Fast Evaluation of MSLS Designs 
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Analytically model multi-stage log-structured designs 
using new analytic primitives that consider redundancy 

 Accuracy: Only ≤ 3–6.5% off from LevelDB/RocksDB experiment 
 
      Speed: < 5 ms per run for a workload with 100 M unique keys 



Performance Metric to Use 
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(Application-level) Write amplification 

Size of data written to flash/disk (B) 
Size of inserted data (A) 

• Easier to analyze than raw throughput 
• Closely related to raw throughput: 

write amplification ∝ 1/throughput 

Focus of this talk: Insert performance of MSLS designs 
• Often bottlenecked by writes to flash/disk 
• Need to model amortized write I/O of inserts 

MSLS 

Flash/disk 

User application 

B 

A = 



Divide-and-Conquer to Model MSLS Design 

8 

MSLS Design 

Table creation 

1. Break down MSLS design 
into small components 

2. Model individual components’ 
write amplification 

3. Add all components’ 
write amplification 

Compaction 

WAtblcreation WAcompaction 

WAtblcreation + WAcompaction 



Modeling Cost of Table Creation: Strawman 

Y B X A X 

5 item inserts 

B X Y A 
Sorted table containing 4 items 

Write amplification of this table creation event = 
4 
5 

9 

Must keep track of 
individual item inserts 

Must perform 
redundant key removal 



Modeling Cost of Table Creation: Better Way 

Unique(bufsize): expected # of unique keys in bufsize requests 

? ? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? 
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bufsize (max # of inserts buffered in memory) 

Write amplification of regular table creation = 
Unique(bufsize) 

… 

… 

✓ No item-level information required 
✓ Estimates general operation cost 

? ? ? ? ? 

? ? ? ? ? 

bufsize 



Modeling Cost of Compaction: Strawman 
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C X A B 
Input 

sorted table1 

C X Y Z A B 
Merged sorted table containing 6 items 

X Y Z 
Input 

sorted table2 

A X B A C Y Z X X Z 

10 item inserts 

Write amplification of this compaction event = 
6 

Must keep track of 
original item inserts 

Must perform 
redundant key removal 

10 



Unique-1(tblsize2): expected # of requests 
 containing tblsize2 unique keys 
 i.e., Unique(Unique-1(tblsize2)) 
           = tblsize2 

Modeling Cost of Compaction: Better Way 
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? ? ? ? tblsize1 

? ? ? ? ? ? 

? ? ? tblsize2 

? ? ? ? ? ? ? ? ? ? 

Unique-1(tblsize1) 

Merge(tblsize1, tblsize2): expected # of unique keys in input tables 
 whose sizes are tblsize1 and tblsize2 

Write amplification of 2-way compaction = 
Merge(tblsize1, tblsize2) 

✓ No item-level information required 
✓ Estimates general operation cost 

Unique-1(tblsize1) + Unique-1(tblsize2) 



New Analytic Primitives Capturing Redundancy 
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Unique-1: [# of requests] ← [# of unique keys] 

Merge: [multiple # of unique keys] → [total # of unique keys] 

• Fast to compute (see paper for mathematical descriptions) 
• Consider redundancy:  Unique(p) ≤ p               Merge(u, v) ≤ u + v 
• Reflect workload skew: [Unique(p) for Zipf] ≤ [Unique(p) for uniform] 

 
• Caveat: Assume no or little dependence between requests 

Unique:  [# of requests] → [# of unique keys] 



High Accuracy of Our Evaluation Method 
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Compare measured/estimated write amplification of insert requests on LevelDB 
• Key-value item size: 1,000 bytes 
• Unique key count: 1 million–1 billion (1 GB–1 TB) 
• Key popularity dist.: Uniform 

0

10

20

30

40

50

60

1 M 3.3 M 10 M 33 M 100 M 330 M 1 B

Our analysis 
Accurate estimation 

(≤ 3% error) 

Unique key count 

Write amplification 
Worst-case analysis 

Overestimation 

Full LevelDB implementation 

Our lightweight in-memory 
LevelDB simulation 



High Speed of Our Evaluation Method 
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Compare single-run time to obtain write amplification of insert requests 
         for a specific workload using a single set of system parameters 
• LevelDB implementation: fsync disabled 
• LevelDB simulation: in-memory, optimized for insert processing 

Method 
Workload size 

(# of unique keys) 
Elapsed time 

Experiment using 
LevelDB implementation 

10 M 101 minutes 

Experiment using 
LevelDB simulation 

100 M 45 minutes 

Our analysis 100 M < 5 ms 



Summary 
• Evaluation method for multi-stage log-structured designs 

• New analytic primitives that consider redundancy 

• System models using new analytic primitives 

 

• Accurate and fast 
• Only ≤ 3–6.5% error in estimating insert cost of LevelDB/RocksDB 

• Several orders of magnitude faster than experiment 

 

• Example applications 
• Automatic system optimization (~26.2% faster inserts on LevelDB) 

• Design improvement (~32.0% faster inserts on RocksDB) 

 

• Code: github.com/efficient/msls-eval 
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Backup Slides 
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X 

Sorted table 

X Y 
Merged sorted table 

X Y 

Sorted table 

Nature of MSLS Operations 

18 

Only one instance survives for each key 

Table creation and compaction: 
essentially redundancy removal 
➪ Modeling operation cost requires 

considering redundancy 

Y X X 

Item inserts 

X Y 
Sorted table 



Write Amplification vs. Throughput 
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Compare measured write amplification/throughput of insert requests on LevelDB 
• Key-value item size: 1,000 bytes 
• Unique key count: 1 million–10 million (1 GB–10 GB) 
• Key popularity dist.: Uniform, Zipf (skew=0.99) 



Mathematical Description of New Primitives 

20 

Unique-1: [# of requests] ← [# of unique keys] 

Merge: [multiple # of unique keys] → [total # of unique keys] 
                  Merge(u, v) = Unique(Unique-1(u) + Unique-1(v)) 

Unique:  [# of requests] → [# of unique keys] 

Unique 𝑝 ≔ 𝑁 − 1− 𝑓𝑋 𝑘
𝑝

𝑘∈𝐾

 

# of requests 

Total # of unique keys (|𝐾|) 

Set of unique keys 

Probability of key 𝑘 in each request 
for a key popularity distribution 



Unique as a Function of Request Count 
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Uniform key popularity 

Skewed key popularity 

Compare measured write amplification/throughput of insert requests on LevelDB 
• Key-value item size: 1,000 bytes 
• Unique key count: 100 M (100 GB) 
• Request count: 0–1 billion 
• Key popularity dist.: Uniform, Zipf (skew=0.99) 



LevelDB Design Overview 
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Level 1 

Level 2 

Level 3 

Level 4 

Key space 

(Omitted: memtable, write-ahead log, level 0) 

Each level are partitioned 
into small tables (~2 MB) 

for incremental compaction 

Each level’s total size 
= ~10X previous level’s 

Table to 
compact 

Overlapping tables Merged tables 

Q: Average # of overlaps? 

➪ Less than 10! 
(“non-uniformity”) 



Non-Uniformity in LevelDB 

23 

Level l-1 

Level l 

Level l+1 

Key space 

(Omitted: memtable, write-ahead log, level 0) 

Fast to sweep small level 
➪ Add new data to 

next level uniformly 
across key space 

Slow to sweep large level 
➪ Soon-to-be-compacted 

region becomes dense, 
causing non-uniformity 

➪ Fewer overlapping 
tables in next level 

Just 
compacted 

Soon to be 
compacted 

Direction of compaction in key space (round-robin way) 



 1 // @param  L     maximum level 
 2 // @param  wal   write-ahead log file size 
 3 // @param  c0    level-0 SSTable count 
 4 // @param  size  level sizes 
 5 // @return       write amplification (per-insert cost) 
 6 function estimateWA_LevelDB(L, wal, c0, size[]) { 
 7   local l, WA, interval[], write[]; 
 8 
 9   // mem -> log 
10   WA = 1; 
11 
12   // mem -> level-0 
13   WA += unique(wal) / wal; 
14 
15   // level-0 -> level-1 
16   interval[0] = wal * c0; 
17   write[1] = merge(unique(interval[0]), size[1]); 
18   WA += write[1] / interval[0]; 
19 
20   // level-l -> level-(l+1) 
21   for (l = 1; l < L; l++) { 
22     interval[l] = interval[l-1] + dinterval(size, l); 
23     write[l+1] = merge(unique(interval[l]), size[l+1]) + unique(interval[l]); 
24     WA += write[l+1] / interval[l]; 
25   } 
26 
27   return WA; 
28 } 
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LevelDB-specific function 
to take into account “non-uniformity” 

Pseudo Code of 
LevelDB Model 



Sensitivity to Workload Skew 

25 

Compare measured/estimated write amplification of insert requests on LevelDB 
• Key-value item size: 1,000 bytes 
• Unique key count: 1 million–1 billion (1 GB–1 TB) 
• Key popularity dist.: Zipf (skew=0.99) 

0

10

20

30

40

50

60

1 M 3.3 M 10 M 33 M 100 M 330 M 1 B
Unique key count 

Write amplification 

LevelDB impl/simul 

Our analysis 
Accurate estimation 

Worst-case analysis 
Workload skew ignored 



Automatic System Optimization Result 
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Compare measured/estimated write amplification of insert requests on LevelDB 
• Key-value item size: 1,000 bytes 
• Write buffer size: 4 MiB–[10% of total unique key count] 
• Unique key count: 10 million (10 GB) 
• Key popularity dist.: Uniform, Zipf (skew=0.99) 



End of Slides 
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