

PCAP: Performance-Aware Power Capping for the Disk Drive in the Cloud

Mohammed G. Khatib & Zvonimir Bandic WDC Research

© 2016 Western Digital Corporation

All rights reserved

2/24/16 1

HDD's power impact on its cost 3-yr server & 10-yr infrastructure amortization

Based on Hamilton's DC cost model [http://perspectives.mvdirona.com/2010/09/overall-data-center-costs/]

Western Digital

Two types of datacenters

The average activity distribution of a sample of 2 Google clusters, each containing over 20,000 servers, over a period of 3 months 2013

Power over-subscription

• For maximum cost effectiveness, use provisioned power fully

–If a facility operates at 50% of its peak power capacity, the effective provisioning cost per Watt used is **doubled**!

Luiz A. Barroso [The Datacenter as a Computer, 2013]

- *How many servers fit within a given budget?* Hard question!
 - -Specs are very conservative \rightarrow Dell & HP offer online power calculators
 - -Actual power consumption varies significantly with load
 - -Hard to predict the peak power consumption of a group of servers
 - while any particular server might temporarily run at 100% utilization, the maximum utilization of a group of servers probably isn't 100%.
- Problem: using any power numbers but the specs runs the risk of
 - \rightarrow facility power over-subscription
 - \rightarrow Power capping becomes necessary as a saftey mechanism

Power capping

• What is power capping?

 Preventing datacenter's total power usage from violating (crossing) a predefined limit, the power cap (i.e., prevent power overshooting)

• Techniques:

-Software techniques such as workload re-scheduling

-Duty cycle adaptation

-...

• This work:

- –Focuses on the 3.5" enterprise HDD
- -Explores techniques inherently related to the underlying hardware
- -Investigates using the queue size to cap the HDD's power consumption

Key contributions

- Investigate throttling HDD's throughput to cap power
 - -No strict positive correlation
 - –HDD is underutilized

Investigate resizing HDD's queues and its impact on power

- -Higher HDD utilization
- Performance differentiation: throughput & tail-latency
- -Limitations under low concurrency and workload

• PCAP system based on queue resizing

- -Make it stable, agile and performance-aware
- -Compare it to throttling
- -Study it for different workloads & settings

PCAP in the works

Western Digital

How we do it?

Setup

- A JBOD with 16x 4TB HDDs
- Exercising a single HDD only
- Workload generators: -FIO
 - -YCSB & MongoDB
- Design space exploration:
 - -Reads/writes/mixed
 - -4kB 2MB
 - -Threads: 10-256
 - -Varying queue depth (QD)
 - HDD: 1-32
 - IO stack: 4-128
 - -Deadline scheduler (default) is used

■ PS 1 ■ PS2 ■ Fans ■ Disks ■ Rest

HDD's dynamic power

Existing techniques

- 1. Power off disks
- Throttling throughput adapting duty cycle
- > negatively impact throughput & latency (later)
- > no strict positive correlation between power & throughput

© 2016 Western Digital Corporation

outstanding requests matters – queue size

Proposal: Resizing queues

- We propose to resize HDD queues
- Queues:

 OS I/O scheduler (IOQ)
 HDD internal queue (NCQ)
- Dynamically resizing as the power cap changes
- Allows to control power
- Minding that queue size influences

 Throughput
 Tail-latency

Queue-size & power - causality

- Queue size influences the seek distance between requests
- A **small** queue results in **long** seek distance due to limited scheduling
- Long distances require acceleration & deceleration
- Acceleration and deceleration takes relatively large power
- And vice versa

Power vs. Queue size

Power vs. IOQ

PCAP design

- Reduce HDD's power *quickly* to bring it below the power cap
- -Max out HDD's performance when more power is available
- -But *cautiously* so that power cap is not violated
- → Different scaling factors of the queue sizes a_{UP} and a_{DN}
- Reduces oscillations around the target power
- \rightarrow Hysteresis with margins [- ε ,+ ε]
- Periodically adapts queues to ensure cap power
- \rightarrow Tunable period (T)

PCAP: basic

PCAP: Agile (bounded queues)

PCAP: Agile w/ improved throughput

PCAP: Dual-mode

Summary of performance

PCAP limitations Effective queue size matters

Conclusions

• Throttling underutilizes HDD's performance

- Useful under low concurrency and sequential throughput

• PCAP: resizing queues

- Improves HDD's utilization
- 32% more throughput
- -50% more requests < 100ms
- WC latency reduce by 2x

• PCAP performance is limited under

- Low concurrency
- Light workloads
- PCAP works for multiple HDDs
- Please see the paper for more observations and results

Thanks for your attention!

Q & A

Interested in internship in WDC research? Apply at: http://bit.do/FAST16 Email: mohammed.khatib@hgst.com

© 2016 Western Digital Corporation