Uncovering Bugs in Distributed Storage
Systems During Testing (not in Production!)

Pantazis Deligiannis
Imperial College London

Imperial College Microsoft N -
mperial College “pasearch 10] 111k

Akash Lal

Alastair Donaldson Paul Thomson Rashmi Mudduluru Matt McCutchen John Erickson

2

Top Problem in Distributed Storage
Systems: Testing Coverage

“Due to limited testing coverage, many
correctness problems are only exposed in
production through live-sites”

- “Engineering overhead extremely high to
identify problems”

- “Practical tools that can improve testing
coverage highly appreciated!”

— technical leaders and senior managers in Azure Storage

But why programming and testing
distributed systems is so HARD?

unreliable network leading
. to messagel/data loses

Many sources of nhondeterminism
cause subtle (but serious) bugs that
are hard to detect, diagnose and fix

Today, to find these bugs,
engineering teams use:

- Design reviews
- Code reviews
- Unit testing

- Integration testing
- Stress testing

Case Study in Microsoft:
Testing Azure Storage vNext

Microsoft Azure Storage

Durable, highly available, massively scalable
cloud storage solution

10s PB in 2010 - now EB
60+ trillion objects

Paxos-based, centralized metadata management

Microsoft Azure Storage vNext

New architecture to scale Azure Storage capacity by >100x

- Completely distributed and fully scale-out metadata management system
- Data stored in extents (GB per extent) — extent space partitioned

- Extent Nodes are managed by light-weight, distributed Extent Managers

Extent Extent Extent
Manager 1 Manager 2 Manager N

Network Engine Network Engine Network Engine

Extent Extent Extent Extent
Node 1 Node 2 Node 3 Node M

EStoragej EStoragej EStoragej EStoragej

Microsoft Azure Storage vNext

- One of the key tasks of Extent Manager is to maintain the replicas

- In this case study we focus on testing the replication logic — very
important as we do not want to lose customer data!

Extent
Manager

Network Engine

Extent Extent Extent
Node 1 Node 2 Node N

EStoragej EStoragej EStoragej

Difficulty in Testing

- Unit tests — always pass

- Integration tests — always pass

- Launch Extent Manager and Extent Nodes

- Kill EN and launch new EN - test extents repaired

- Stress tests — fail from time to time

- ENs are constantly killed and launched

- replication process gets stuck

- hard to figure out why — too many logs accumulated!

11

Testing vNext with P#

P# [PLDI’15] is a systematic testing framework

Controls and systematically explores all declared sources of
nondeterminism in a distributed system

Support for modeling system components as communicating
state-machines to perform component-wise testing (which

can scale better than testing unmodified systems)

- Provides a send primitive for sending messages between P# machines
instead of real network, and can systematically explores interleavings

- Write test harness that injects failures, timeouts, client requests, etc

- Write safety and liveness specifications

Can be applied on message passing systems written in .NET
or C++

Open source in GitHub, available for anyone to use!
12

Bug Finding as a Search Problem

P# test harness for vNext

Wrapped in a P# state-machine

}

Extent
Manager

<>

¥

(real vINext code)

Testing :)

Driver < ,' :

Test Harness written in P#

| Modeled
EXtCnt NOdC Modeled
Extent Node

A

Modeled
Extent Node

-
=
®
=~
=9,
D
i
e
"
S
=
;’
O
"3

684 lines of source code

14

Testing Driver

- Setting up the “distributed” system (voal vNext code)

Extent
Manager

P# simulates system in a single process!

Messages go through P#, not the real network!

Test Harness written in P#

|
|
|
| Modeled
|
|

Extent Node Modeled

A \
[

Testing

Extent Node

Modeled

Driver

- - ——— —

1 real Extent Manager, 3 modeled ENs and a single extent

Small setup sufficient to expose bug - easy to troubleshoot

- Non-determinism modeled in P#

E.g. EN failures, timeouts, etc

Messages: delays and losses

- Two testing scenarios

' 7| Extent Node

————————————

Scenario l: pass single extent to one EN — assert (extent eventually

replicated to the other ENSs)

Scenario ll: fail arbitrary EN and launch a new one — assert (extent
eventually replicated to the new EN, target is 3 replicas available)

15

Test Harness written in P#

Real Extent Manager ==

Modeled
Extent Node

Extent

Modeled
Manager oce’

' 7| Extent Node

Wrapper Machine

// wrapping the target vNext component in a P# machine
class ExtentManagerMachine : Machine {

‘prlvate EXtentManager ExtMgr // reél’vNextwéodeﬂi

wrap testing

void Init() { o - e

ExtMgr = new @ ExtentManager () ; - ”%*\AQL

| ExtMgr.NetEngine = new MockedNetEngine(); // mock network |3 target (rea|
“Extlgr.IsMockingTimer = true; // disable internal timer Extent Manager)

}

; [OnEvent (ExtentNodeMessageEvent, DeliverMessage)]

| void DeliverMessage(ExtentNodeMessage msg) { instantiate teSt'ng
| // relay messages from Extent Node to Extent Manager | target and Create

ExtMgr.ProcessMessage (msg) ;
} mock network for
outbound messages

[OnEvent (TimerTickEvent, ProcessExtentRepair)]
void ProcessExtentRepair() {

// extent repair loop driven by external timer o]
ExtMgr.ProcessEvent (new ExtentRepairEvent()); relay inbound
7 messages from ENs
to the real Extent
Manager

16

Test Harness written in P#

|
I
|
I Modeled
|
u o u n e ! Extent Node Modeled
- - : AN Extent Node

Modeled

."/1 Extent Node

Messages

Manager
— S — ~ —— = ———— =

// network interface in vNext
' class NetworkEngine {
u public virtual void SendMessage(Socket s, Message msg);

real network

} ~4
engine

S—

— ==

' // mocked engine for intercepting Extent Manager messages
. class MockedNetEngine : NetworkEngine {
| public override void SendMessage(Socket s, Message msg) {
| // intercept and relay Extent Manager messages
PSharpRuntime.Send(this.TestingDriver,

new MessageFromExtentManagerEvent(), s, msg);

mocked network
engine: intercept
and relay outbound
messages to P#

17

Real Extent Manager
Driven by P# Timer | .

Manager

] . : 1 vNext cod
// wrapping the target vNext component in a P# machine (real vNext code)

class ExtentManagerMachine : Machine {
private ExtentManager ExtMgr; // real vNext code

void Init() {

ExtMgr = new ExtentManager();

ExtMgr.NetEngine = new MockedNetEngine(); // mock network
ExtMgr.IsMockingTimer = true; // disable internal timerl -
y— i

[OnEvent (ExtentNodeMessageEvent, DeliverMessage)]
void DeliverMessage(ExtentNodeMessage msg) {
// relay messages from Extent Node to Extent Manager

ExtMgr.ProcessMessage (msg) ;
}

3[OnEvent(TimerTickEvent, ProcessExtentRepair)]
|void ProcessExtentRepair() {
// extent repair loop driven by external timer

ExtMgr.ProcessEvent (new ExtentRepairEvent());

}

}

Modeled

Extent Node

Test Harness written in P#

river <

/i

Modeled
Extent Node

Modeled

[4
/
. [\\ // !
Testing i N :
1
<> Ny
! \ [
D : :
1 7\
I / \
I / \
/
. i ’
~ ’ '
. - ! ’]
~ o - —‘V’ of
. Y
<
| .

timer

' 7| Extent Node

act upon P# timer

18

Modeled EN

Components

- Simplified EN logic only related to the
replication process

- Helps to achieve better testing scalability
by not having to go through the real ENs

- Reuses EN internal components whenever
appropriate (to maximize code reuse)

19

Test Harness written in P#

Liveness Monitor

/ '.A Extent Node
Extent

Manager
private HashSet<Machine> ExtentNodesWithReplica;

(real vINext code)

Testing Y
<> Dri ol o Modeled
river . x T
. . . ' AN ' 7| Extent Node
class RepairMonitor : Monitor { . AN :
< I
!

i‘// cold state: repaired
' cold state Repaired {
| [OnEvent(ENFailedEvent, ProcessENFailure)]
void ProcessENFailure(ExtentNodeMachine en) {
ExtentNodesWithReplica.Remove(en) ;
if (ReplicaCount < Harness.REPLICA_COUNT_TARGET)
jumpto Repairing;

cold state:
liveness property
satisfied

}
3

// hot state: repairing
. hot state Repairing {
! [OnEvent (ExtentRepairedEvent, ProcessRepairCompletion)]
void ProcessRepairCompletion(ExtentNodeMachine en) {
ExtentNodesWithReplica.Add(en) ;
if (ReplicaCount == Harness.REPLICA_COUNT_TARGET)

jumpto Repaired;

hot state:
7 liveness property
not satisfied yet

Stuck in hot state infinitely long - liveness bug

20

Liveness Checking in P#

- Approach | — similar to MaceMC [NSDI’07]

- Run until a given large bound
- Check liveness monitor when bound is reached

- If in hot state, report potential liveness bug
- Approach |l (work-in-progress)
- Try to detect a fair, infinite loop (lasso-based approach)

- If the monitor is stuck in a hot state in the loop (i.e.
never goes to a cold state), we report a liveness bug

21

Testing vNext with P#

- Developers spent 2 weeks modeling the
environment of the Extent Manager and writing
the liveness specification P# monitor (684 loc)

- P# found a liveness violation in a matter of
minutes and produced a small sequential trace

- ldentify and fix bug by developers in less than
an hour (one line of code — see next slide)

- After the fix, developers run the P# test
harness for 1 hour without finding any bugs

22

Extent Manager

Sync reportfromENs - - - - ____________

/ g Extent Manager

Extent
Manager

_ Extent | | Extent Node
- Center Map

Repair requests to ENs

23

Sync report from ENs P mmEmmmmmmmEmmmssmmmmmmmm——-——

Liveness Bug /

Extent
Manager

' |, Extent | Extent Node
' Center J/, Map

R

Extent Node EN, failed (from 3 available) | \

jL Extent Repair Loop

- EN, removed from ExtentNodeMap Heartbeat fomENs ™ l ------------- '

Repair requests to ENs

- Deleted EN,’s extent from ExtentCenter
(extent { EN,, EN,, EN, }) > (extent { EN,, EN, })
Extent Manager received delayed sync report from EN,

- Updated ExtentCenter
(extent { EN,, EN, }) > (extent { EN,, EN,, EN, })
EN, no longer in ExtentNodeMap - never deleted again from ExtentCenter

Extent Manager never schedules repair process again

(extent { EN,, EN, }) > (extent { EN,, EN,, EN, }) - all healthy!

If this happens two more times - all replicas lost > customer data lost!

One line fix: refresh ExtentNodeMap upon sync report!
24

- Tools for Software Engineers (TSE) team:
used P# during development of a Live
Table Migration protocol for Azure (found

and fixed >10 safety bugs)

- Team in MSR India: created P# executable
model of Azure Service Fabric runtime,
which can be eventually used to test
arbitrary customer services built on top of
the Service Fabric APls

25

P# has been successfully used by Microsoft
Azure to test multiple distributed systems.

P# is freely available in GitHub so you can
use it for your own projects!

https://github.com/p-org/PSharp

p.deligiannis@imperial.ac.uk

26

https://github.com/p-org/PSharp
mailto:p.deligiannis@imperial.ac.uk?subject=

