
Uncovering Bugs in Distributed Storage
Systems During Testing (not in Production!)

Pantazis Deligiannis
Imperial College London

1

Alastair Donaldson Matt McCutchenPaul Thomson

Cheng Huang Wolfram Schulte Shuo Chen

John EricksonRashmi Mudduluru

Akash Lal Shaz Qadeer

2

2

Top Problem in Distributed Storage
Systems: Testing Coverage

- “Due to limited testing coverage, many
correctness problems are only exposed in
production through live-sites”

- “Engineering overhead extremely high to
identify problems”

- “Practical tools that can improve testing
coverage highly appreciated!”

– technical leaders and senior managers in Azure Storage

3

But why programming and testing
distributed systems is so HARD?

4

Many sources of nondeterminism
cause subtle (but serious) bugs that
are hard to detect, diagnose and fix

races in the asynchronous
interaction between system components

unexpected failures,

timeouts, etc

unreliable network leading

to message/data loses

5

Today, to find these bugs,
engineering teams use:

- Design reviews

- Code reviews

- Unit testing

- Integration testing

- Stress testing

- …

CANNOT COPE WITH THE

NONDETERMINISM !!!

6

Case Study in Microsoft:
Testing Azure Storage vNext

7

Microsoft Azure Storage

Durable, highly available, massively scalable
cloud storage solution

10s PB in 2010 ! now EB

60+ trillion objects

Paxos-based, centralized metadata management

8

New architecture to scale Azure Storage capacity by >100x

Microsoft Azure Storage vNext

- Completely distributed and fully scale-out metadata management system

- Data stored in extents (GB per extent) — extent space partitioned

- Extent Nodes are managed by light-weight, distributed Extent Managers

Extent
Node 3

Extent
Node 1

...

Extent
Manager 1

Extent
Node 2

Extent
Node M

...

Storage Storage Storage Storage

Network Engine

Extent
Manager 2

Network Engine

Extent
Manager N

Network Engine

9

Microsoft Azure Storage vNext

- One of the key tasks of Extent Manager is to maintain the replicas

- In this case study we focus on testing the replication logic — very
important as we do not want to lose customer data!

10

Extent
Node N

Extent
Node 1 ...

Extent
Node 2

Storage Storage Storage

Extent
Manager

Network Engine

- Unit tests — always pass

- Integration tests — always pass
- Launch Extent Manager and Extent Nodes

- Kill EN and launch new EN ! test extents repaired

- Stress tests — fail from time to time
- ENs are constantly killed and launched

- replication process gets stuck

- hard to figure out why — too many logs accumulated!

Difficulty in Testing

11

- P# [PLDI’15] is a systematic testing framework

- Controls and systematically explores all declared sources of
nondeterminism in a distributed system

- Support for modeling system components as communicating
state-machines to perform component-wise testing (which
can scale better than testing unmodified systems)
- Provides a send primitive for sending messages between P# machines

instead of real network, and can systematically explores interleavings

- Write test harness that injects failures, timeouts, client requests, etc

- Write safety and liveness specifications

- Can be applied on message passing systems written in .NET
or C++

- Open source in GitHub, available for anyone to use!

Testing vNext with P#

12

Bug Finding as a Search Problem
program start

BUG!!
13

P# test harness for vNext

Wrapped in a P# state-machine

684 lines of source code

14

Testing Driver
- Setting up the “distributed” system

- P# simulates system in a single process!

- Messages go through P#, not the real network!

- 1 real Extent Manager, 3 modeled ENs and a single extent

- Small setup sufficient to expose bug ! easy to troubleshoot

- Non-determinism modeled in P#

- E.g. EN failures, timeouts, etc

- Messages: delays and losses

- Two testing scenarios

- Scenario I: pass single extent to one EN — assert (extent eventually
replicated to the other ENs)

- Scenario II: fail arbitrary EN and launch a new one — assert (extent
eventually replicated to the new EN, target is 3 replicas available)

15

Real Extent Manager
Wrapper Machine

wrap testing
target (real
Extent Manager)

instantiate testing
target and create
mock network for
outbound messages

relay inbound
messages from ENs
to the real Extent
Manager

16

Outbound
Messages

real network
engine

mocked network
engine: intercept
and relay outbound
messages to P#

17

Real Extent Manager
Driven by P# Timer

disable internal
timer

act upon P# timer

18

Modeled EN
Components

- Simplified EN logic only related to the
replication process

- Helps to achieve better testing scalability
by not having to go through the real ENs

- Reuses EN internal components whenever
appropriate (to maximize code reuse)

19

Liveness Monitor

Stuck in hot state infinitely long ! liveness bug

cold state:
liveness property
satisfied

hot state:
liveness property
not satisfied yet

20

Liveness Checking in P#

- Approach I — similar to MaceMC [NSDI’07]
- Run until a given large bound

- Check liveness monitor when bound is reached

- If in hot state, report potential liveness bug

- Approach II (work-in-progress)

- Try to detect a fair, infinite loop (lasso-based approach)
- If the monitor is stuck in a hot state in the loop (i.e.

never goes to a cold state), we report a liveness bug

21

- Developers spent 2 weeks modeling the
environment of the Extent Manager and writing
the liveness specification P# monitor (684 loc)

- P# found a liveness violation in a matter of
minutes and produced a small sequential trace

- Identify and fix bug by developers in less than
an hour (one line of code — see next slide)

- After the fix, developers run the P# test
harness for 1 hour without finding any bugs

Testing vNext with P#

22

Extent Manager

Extent Manager

Extent
Center

Extent Node
Map

Sync report from ENs

Heartbeat from ENs

Repair requests to ENs

Extent
Manager

Extent Repair Loop

23

Extent Manager

Extent
Center

Extent Node
Map

Sync report from ENs

Heartbeat from ENs

Repair requests to ENs

Extent
Manager

Extent Repair Loop

Liveness Bug
- Extent Node EN0 failed (from 3 available)

- EN0 removed from ExtentNodeMap

- Deleted EN0’s extent from ExtentCenter

(extent { EN0, EN1, EN2 }) ! (extent { EN1, EN2 })

- Extent Manager received delayed sync report from EN0

- Updated ExtentCenter

(extent { EN1, EN2 }) ! (extent { EN0, EN1, EN2 })

- EN0 no longer in ExtentNodeMap ! never deleted again from ExtentCenter

- Extent Manager never schedules repair process again

(extent { EN1, EN2 }) ! (extent { EN0, EN1, EN2 }) ! all healthy!

- If this happens two more times ! all replicas lost ! customer data lost!

- One line fix: refresh ExtentNodeMap upon sync report!
24

- Tools for Software Engineers (TSE) team:
used P# during development of a Live
Table Migration protocol for Azure (found
and fixed >10 safety bugs)

- Team in MSR India: created P# executable
model of Azure Service Fabric runtime,
which can be eventually used to test
arbitrary customer services built on top of
the Service Fabric APIs

Other case studies in Microsoft

Read our paper!

25

P# has been successfully used by Microsoft
Azure to test multiple distributed systems.

P# is freely available in GitHub so you can
use it for your own projects!

26

https://github.com/p-org/PSharp

p.deligiannis@imperial.ac.uk

Thanks! Questions?

https://github.com/p-org/PSharp
mailto:p.deligiannis@imperial.ac.uk?subject=

