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Fast scalar stream telemetry
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Overview

Challenges with how this data is used and processed

Solving this with the abstraction and operations that BTrDB provides
BTrDB data structures

Performance evaluation of a BTrDB Go implementation

ldempotent distillation operations leveraging fast changeset calculation



Fast scalar stream telemetry
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A stream is a list of (timestamp<int64> , value<float64>) tuples



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries
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14 month overview from just one uPMU: 6 streams:
24 billion datapoints, 400GB of data



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries
e Aggregation windows are much larger than the sample interval
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One pixel column # is 4.2 million data points
Aggregation window is 6 orders of magnitude bigger than sample interval



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries
e Aggregation windows are much larger than the sample interval
e Data transformed in a DAG, creating multiple dependent streams
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Why can we not solve this with existing DBs

e Density:
m 1.4 Million values/s/node raw data
m  >10 Million values/s /nodederived streams
o  Existing throughput is too low (<< 1 Million values/s/node)
e Aggregation capability mismatch:
o Either done Just In Time (query time aggregation) - too expensive for 100's of GB
o Ordone atinsert time - doesn't handle out of order / changed data
o Don't guarantee consistency of aggregate
e Hard to support analysis DAG:
o Require per-consumer state
o Don't provide snapshot features - needed for idempotent analysis
o Don't guarantee consistency of result streams



Why do these shortcomings exist?

e Often, because they do too much:
o Designed for data that is complex, multidimensional
o Support queries based on multiple indexes, or on values
m Find me log messages where the type is error
m Find the sum of session times where the advert is from vendor X




Simple Abstraction for Timeseries Database

e QueryRange(uuid, start_time, end_time)
-> <[<time, value>]>

e InsertValues(uuid, [<time, value>])
->

e DeleteRange(uuid, start_time, end_time)
->




Would this work?

e Analyse recently changed data - HARD
o Not always at the end of the stream

e Perform computation idempotently - HARD
o Snapshot the stream

e Compute dependent streams: B = f(A) - HARD
o Run a function over everything in A that has changed since last computation

e Locate interesting events in large quantities of data - HARD

o Inthe synchrophasors project, an event is ~100ms, and a year's worth of data from a
single device is 670 GB
o ‘Interesting’is hard to define, but it often means:
m above or below a threshold
m  more than X from the mean
m having a different density than the rest (holes, timebase overlapping etc)



Improved Abstraction for Timeseries Datahase

e QueryRange(uuid, start_time, end_time, version)
-> (version, List of (time, value)) '

e InsertValues(uuid, [<time, value>])
-> version

e DeleteRange(uuid, start_time, end_time)
-> version

e StatisticalWindow(uuid, start_time, end_time, version, windowsize)
-> (version, List of (time, min, mean, max, count))

e ComputeDiff(uuid, fromversion, toversion, version, resolution)
-> List of (starttime, endttime)



Would this work?

e Analyse recently changed data
o Not always at the end of the stream

e Perform computation idempotently
o Snapshot the stream

e Compute dependent streams: B = f(A)
o Run a function over everything in A that has changed since last computation

e Locate interesting events in large quantities of data

o Inthe synchrophasors project, an event is ~100ms, and a year's worth of data from a
single device is 670 GB
o ‘Interesting’is hard to define, but it often means:
m above or below a threshold
m  more than X from the mean
m having a different density than the rest (holes, timebase overlapping etc)



A Go implementation of BIrDB
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A Go implementation of BIrDB
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BITDB Tree - a datastructure for this abstraction

~3KB
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BIrDB Tree - a datastructure for this abstraction
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More on the tree

There are good reasons for doing aggregates at commit time, in the tree:

e Data already in memory, nodes already need COW: no additional 10
e If version is visible, root was written therefore aggregates are consistent
e They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

e [Edges use native addresses, directly resolvable by underlying storage



A Go implementation of BIrDB
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More on the tree

Why do aggregates in the tree?

e Data already in memory: no additional |10
e |If version is visible, root was written therefore aggregates are consistent
e They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

e Edges use native addresses, directly resolvable by underlying storage

e Only the root of the tree requires translation
o uuid -> native address of the root



A Go implementation of BIrDB
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Evaluation

Raw throughput with chronological
random inserts and queries on EC2
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A Go implementation of BIrDB
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A Go implementation of BIrDB
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Out of order performance characteristics

When insertion was

Throughput [million pt/s] for | Chrono. | Random
Insert 28.12 27.73
Cold query in chrono. order 31.41 31.67
Cold query in same order - 32.61
Cold query in random order 29.67 28.26
Warm query in chrono. order | 114.1 116.2
Warm query in same order - 119.0
Warm query in random order | 113.7 117.2




Evaluation

Statistical queries on a
production server
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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Statistic queries : visualisation
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DISTIL - Eventually consistent derivative streams

e B=1f(A)
o Find differences in A since last update of B - CalculateDiff()
o Compute f(AA) and update B
o If operation succeeds, update B's metadata with new version of A

e Sometimes keep A up to date all the time
e Sometimes materialize A just in time when needed

A Immutable B
Versioned stream algorithm Versioned stream

e.g Sliding window quartiles algorithm, uuid(A), ver(A)



summary

By leveraging qualities about the data

Handle raw inserts/requests substantially faster than existing solutions
(>16x faster than the new Cassandra C++ rewrite)

Can analyse years of data in milliseconds, for a significant set of queries
Aggregates are guaranteed to be consistent

Can build elegant eventual consistency systems using multiversioning

Although simpler, relevant to a massive set of streams. Almost all physical
quantity measurement quantities are scalar or vector-of-scalar streams.



