BIrDB: Optimizing Storage System
Design for Timeseries Processing

Michael P Andersen, David E. Culler
University of California, Berkeley



Fast scalar stream telemetry

= e e e s S e e B B
5 = 1:5usp Positions | 2 5. s | 3:SuspHiso | 4 Susp FFT | & Aide Height | 6 Danpe thg | & lap Distance. 4r
23/ (0@ a @
o L@
Lots
Soa
omo
o
nos

i
SupensonPsoFLin) 2141

Pes o] (2050]
i 204

o B Mo

ARV NI o ey
A \\ﬂ{w,,wj(\’d‘ )’ | ‘\W\TW
¢ [ N W Jq{yr' L‘i»‘w}m“w’ (

sl Es =
| et -

_E e o e e

G G : i £
] :
2014-05-19 / PTFDV / CPU utilization —
x 20
Size: 897,736,704 B Used: 725,304,560 B =
Max: 1,082,130,432 B 16
900 MB .

800 ME

cores

700 ME
600 MB
500 MB
400 MB
300 MB

Sun 18:88 Mon 00:00 Mon B6:00 Mon 12:88

W systen-1 M system-2 M systen-3 M systen-4 M system-5 M systen-6 M system-7
Win: 7.66 Hoy: 8.67 Mac: 9.32

O iowait-1 O iovait-2 @ iowait-3 B iowait-4 @ iowait-5 B iowait-6 M lowait-7
Win: 8,07 Hoy: 0.29 Mac: 3,91

@user-1 @user-2 M@user-3 M user-4 Muser-5 @ user-6 W user-7

Win: 2,07 Moy: 2.75 Max: 4.64

200 ME

100 ME

0ME
11:.00 11:30 12:00 12:30 13:00 13

B Metaspace size B Used Metaspace



Overview

Challenges with how this data is used and processed

Solving this with the abstraction and operations that BTrDB provides
BTrDB data structures

Performance evaluation of a BTrDB Go implementation

ldempotent distillation operations leveraging fast changeset calculation



Fast scalar stream telemetry

291+
290+
289+
288+
287 1
286

285+

12 PM Mon 15 12 PM Tue 16
Sun Jun 14, 2015 06:03:10 Tue Jun 16, 2015 06:01:12

Time [America/Los_Angeles (PST)]

A stream is a list of (timestamp<int64> , value<float64>) tuples



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries



7,600 1
7,500 Ly
7,400
o 7,300+ =
> <
7,200
200
7,100
7,000 = 0 T T T T T 1
2015 April July October 2016

14 month overview from just one uPMU: 6 streams:
24 billion datapoints, 400GB of data



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries
e Aggregation windows are much larger than the sample interval



7,600 1
7,500 - Ly
7,400
o 7,300+ =
> <
7,200
200
7,100-
7,000 = 0 T T T T T 1
2015 April July October 2016

One pixel column # is 4.2 million data points
Aggregation window is 6 orders of magnitude bigger than sample interval



Challenges with this fast scalar telemetry

Data characteristics:

e High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
e Varying lag and out of order delivery: e.g. delivered over intermittent LTE
e High precision timestamps: nanoseconds

Analysis characteristics:

o Aggregated queries more common than full-resolution queries
e Aggregation windows are much larger than the sample interval
e Data transformed in a DAG, creating multiple dependent streams



DISTIL

* .
. *  Multiple PMUs, multiple phases

-
A
>
- S
T one PMU, phase 1 )
L1 Mag L1 Mag Clean L1 Fund. Power L2, L3 Fund.
Power "
-"""-- |
e L1 Disp. P il
C1 Mag Clean ISp. Pwr.
/ g Total Fund. Power
GPS Lock [
.I C1 Ang Cl
C1Ang Frequency lsec ROCOF 1sec
Raw data from
sychrophasor !/',’-ﬁ
L1 Angle Diff
-
-" ,.j

P

““Erom other PMUs




Why can we not solve this with existing DBs

e Density:
m 1.4 Million values/s/node raw data
m  >10 Million values/s /nodederived streams
o  Existing throughput is too low (<< 1 Million values/s/node)
e Aggregation capability mismatch:
o Either done Just In Time (query time aggregation) - too expensive for 100's of GB
o Ordone atinsert time - doesn't handle out of order / changed data
o Don't guarantee consistency of aggregate
e Hard to support analysis DAG:
o Require per-consumer state
o Don't provide snapshot features - needed for idempotent analysis
o Don't guarantee consistency of result streams



Why do these shortcomings exist?

e Often, because they do too much:
o Designed for data that is complex, multidimensional
o Support queries based on multiple indexes, or on values
m Find me log messages where the type is error
m Find the sum of session times where the advert is from vendor X




Simple Abstraction for Timeseries Database

e QueryRange(uuid, start_time, end_time)
-> <[<time, value>]>

e InsertValues(uuid, [<time, value>])
->

e DeleteRange(uuid, start_time, end_time)
->




Would this work?

e Analyse recently changed data - HARD
o Not always at the end of the stream

e Perform computation idempotently - HARD
o Snapshot the stream

e Compute dependent streams: B = f(A) - HARD
o Run a function over everything in A that has changed since last computation

e Locate interesting events in large quantities of data - HARD

o Inthe synchrophasors project, an event is ~100ms, and a year's worth of data from a
single device is 670 GB
o ‘Interesting’is hard to define, but it often means:
m above or below a threshold
m  more than X from the mean
m having a different density than the rest (holes, timebase overlapping etc)



Improved Abstraction for Timeseries Datahase

e QueryRange(uuid, start_time, end_time, version)
-> (version, List of (time, value)) '

e InsertValues(uuid, [<time, value>])
-> version

e DeleteRange(uuid, start_time, end_time)
-> version

e StatisticalWindow(uuid, start_time, end_time, version, windowsize)
-> (version, List of (time, min, mean, max, count))

e ComputeDiff(uuid, fromversion, toversion, version, resolution)
-> List of (starttime, endttime)



Would this work?

e Analyse recently changed data
o Not always at the end of the stream

e Perform computation idempotently
o Snapshot the stream

e Compute dependent streams: B = f(A)
o Run a function over everything in A that has changed since last computation

e Locate interesting events in large quantities of data

o Inthe synchrophasors project, an event is ~100ms, and a year's worth of data from a
single device is 670 GB
o ‘Interesting’is hard to define, but it often means:
m above or below a threshold
m  more than X from the mean
m having a different density than the rest (holes, timebase overlapping etc)



A Go implementation of BIrDB

Request
stage

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Socket N [sid| dat| [sid|dat] [sid] dat| —>

Read
Request

Insertion requests
HTTP / Binary

Multiple
streamsand =
outof order m
data per ]
socket

Session manager

Load RO tree

Managers

Session

Transaction
Coalescence

N merge

COW tree
merge

Generation

J s0O I 16k points |$ | COW merge H

linker

Queue
Sync +
Throttle

one per
socket

COW merge

®

.

Tree
Overlay

read
blocks

bottom
up walk
+ addr

patch

el

locks with
native addrs

Write
stage

Block store

£ :
N
N

to find
nodes in
range

Traverse

Copy +
aggregate
(for writes)

Block Free Addr | | Free Memory | | Compression
Cache Cache Pool Engine
Compressed blocks .
ompressed blo Ceph Storage Provider
Write batching Storage Handle Free Addr
buffer Pool Negotiation
Batches of compressed blocks
over network connections .
COTS solutions
S 2N 2 !
_ Tree |
' Root |
' Ceph pool !
Storage : Map |
\ )

stage S



A Go implementation of BIrDB

Request N Write
stage Insertion requests Session Transaction merge  COW tree Generation stage
HTTP / Binary Managers Coalescence merge linker

J s0 I 16k points Ié | COW merge H

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Multiple

streamsand = COW merge Tree botton|1k
outoforder m up wa
data per -

socket

Queue
Sync +

Overlay | + addr
patch
Socket N|sid|dat| Isidl dat| |sid|dat| — Syne
socket 7
Load RO tree read - blocks Block store

Read blocks

Request > Block Free Addr | [ Free Memory | | Compression
. ; Cache Cache Pool Engine

Compressed blocks

Traverse 4 Ceph Storage Provider

to find

nodes in Write batching Storage Handle || Free Addr

range Copy + buffer Pool Negotiation
aggregate

(for writes) Batches of compressed blocks

over network connections )
COTS solutions

Storage
stage .

I‘
o)
-
=3
ko]
o
[=]
=0
Qo
T Qo



BITDB Tree - a datastructure for this abstraction

~3KB

Stats

Stats

Al 4

Al5|

VA

.

K

Stats

Stats

Al3

K

Alal’

\

Count

[(T.V)]

Count

[(T.V)]

t=[0,4)

t=[4,8)

t=[0,16) B “*--..__ Edge
Version

Copy on write K-ary Tree
Partitioning static time (1933 to 2079)

Leaf nodes

Stats

Stats

AlZ2

K

Als|’

- Time, value pairs + length

Internal nodes

\\'[:[0,8)

Count

[(T.V)]

t=[12,16)

" =[8,16)
~16KB

- Pointers to children
- Version annotations for children
- Aggregates for children

- Min, Mean, Max, Count

- Any associative operator



BIrDB Tree - a datastructure for this abstraction

~3KB

Stats

Stats

A ~... K

t=[0,16) -..._ Edge
Version

Stats

Al3

Stats
N e K

\

Count

[(T.V)]

Count

[(T.V)]

t=[0,4)

t=[4,8)

Copy on write K-ary Tree
Partitioning static time (1933 to 2079)

Leaf nodes

- Time, value pairs + length

Internal nodes

\'[:[0,8)

Stats || Stats
\ =[8,16)
\/ ~16KB
Count
[(TV)]
t=[12,16)

- Pointers to children
- Version annotations for children
- Aggregates for children

- Min, Mean, Max, Count

- Any associative operator



More on the tree

There are good reasons for doing aggregates at commit time, in the tree:

e Data already in memory, nodes already need COW: no additional 10
e If version is visible, root was written therefore aggregates are consistent
e They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

e [Edges use native addresses, directly resolvable by underlying storage



A Go implementation of BIrDB

Request
stage

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Socket N [sid| dat| [sid|dat] [sid] dat| —>

Read
Request

Insertion requests
HTTP / Binary

Multiple
streamsand =
outof order m
data per ]
socket

Session manager

Load RO tree

Managers

Session

Transaction
Coalescence

N merge

COW tree
merge

['so] 16k points |$| COW merge

Queue
Sync +
Throttle

one per
socket

COW merge

Generation
linker

bottom
up walk
+ addr

read
blocks

patch

Write
stage

native addrs

Block store

é :
N
N

range

Traverse
to find
nodes in

Copy +
aggregate
(for writes)

Block Free Addr | | Free Memory | | Compression
Cache Cache Pool Engine
Compressed blocks .
ompressed blo Ceph Storage Provider
Write batching Storage Handle Free Addr
buffer Pool Negotiation
Batches of compressed blocks
over network connections .
COTS solutions
S 2N /2 !
' - Tree E
' Root |
' Ceph pool !
Storage : Map |
\ )

stage e e



More on the tree

Why do aggregates in the tree?

e Data already in memory: no additional |10
e |If version is visible, root was written therefore aggregates are consistent
e They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

e Edges use native addresses, directly resolvable by underlying storage

e Only the root of the tree requires translation
o uuid -> native address of the root



A Go implementation of BIrDB

Request
stage

Insertion requests
HTTP / Binary

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Multiple
streamsand =
outof order m
data per ]
socket

Socket N [sid| dat| [sid|dat] [sid] dat| —>

Read
Request

Session manager

Load RO tree

& )-

Session
Managers

Transaction
Coalescence

N merge

COW tree
merge

J s0O I 16k points |$ | COW merge H

one per
socket

Generation
linker

read
blocks

el

bottom
COW merge | Tree up walk
Overlay [ + addr
patch
Queue
Sync + -
Throttle .

Write
stage

locks

with

native addrs

Block store

Traverse
to find

nodes in
range

Copy +
aggregate
(for writes)

Block Free Addr | | Free Memory | | Compression
Cache Cache Pool Engine
Compressed blocks .
ompressed blo Ceph Storage Provider
Write batching Storage Handle Free Addr
buffer Pool Negotiation
Batches of compressed blocks
over network connections .
COTS solutions
A /T TTToTTTTTmmTTTTETT
' - Tree
' Root
' Ceph pool
Storage : Map

stage S



Evaluation

Raw throughput with chronological
random inserts and queries on EC2

EBS OsD
volumes

BTrDE + MongoDB Load
Ceph nodes node generators
\ r

4%
175MBIs

4x25GB @

4x
175MBis

o

Ay
175MB/s

4%
175MB/s

All machines are EC2 c4.8xlarge instances
G0GE RAM

Intel Xeon E5-2666 v3 with 36 vCPUs




throughput [million points/second]

120}

100}

80|

insertion
log max
warm query
cold query

833 MB/s

cluster size




A Go implementation of BIrDB

Request
stage

Insertion requests
HTTP / Binary

Managers

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Multiple
streamsand =
outof order m
data per ]
socket

Socket N [sid| dat| [sid|dat] [sid] dat| —>

Read
Request

Session manager

Load RO tree

Session

Transaction
Coalescence

N merge

COW tree
merge

J s0 I 16k points |$ | COW merge H

one per
socket

Generation
linker

bottom
COW merge | Tree up walk
Overlay [ + addr
patch
Queue
Sync + -
Throttle <

read
blocks

locks with

el

native addrs

Write
stage

Block store

é :
N
N

Traverse
to find

nodes in
range

Copy +
aggregate
(for writes)

stage

Block Free Addr | | Free Memory | | Compression
Cache Cache Pool Engine
C d block .
ompressed blocks Ceph Storage Provider
Write batching Storage Handle Free Addr
buffer Pool Negotiation
Batches of compressed blocks
over network connections .
COTS solutions
T —— ey !
S — Tree |
Root |
Ceph pool 1
Storage Map |:
1



throughput [million points/second]

120}

100}

80|

insertion
log max
warm query
cold query

833 MB/s

cluster size




A Go implementation of BIrDB

Request
stage

Socket 0 |sid|dat| |sid|dat| |sid|dat| —_—

Socket N [sid| dat| [sid|dat] [sid] dat| —>

Read
Request

Insertion requests
HTTP / Binary

Multiple
streamsand =
outof order m
data per ]
socket

Session manager

Load RO tree

é :
N
N

range

Traverse
to find
nodes in

Copy +
aggregate
(for writes)

N Write
Session Transaction merge  COW tree Generation stage
Managers Coalescence ! merge linker
J s0 I 16k points |— —> | COW merge H
bottom
N — | COW merge | Tree up walk
Overlay | + addr
q patch
Queue
Sync + L’
Throttle L
one per fead locks with
native addrs
socket read blocks atve & Block store
blocks

Block Free Addr | | Free Memory | | Compression
Cache Cache Pool Engine
Compressed blocks .
ompressed blo Ceph Storage Provider
Write batching Storage Handle Free Addr
buffer Pool Negotiation
Batches of compressed blocks
over network connections .
COTS solutions
S 2N /2 !
' - Tree E
' Root |
' Ceph pool !
Storage : Map |
\ )

stage e e



Out of order performance characteristics

When insertion was

Throughput [million pt/s] for | Chrono. | Random
Insert 28.12 27.73
Cold query in chrono. order 31.41 31.67
Cold query in same order - 32.61
Cold query in random order 29.67 28.26
Warm query in chrono. order | 114.1 116.2
Warm query in same order - 119.0
Warm query in random order | 113.7 117.2




Evaluation

Statistical queries on a
production server

1Gbit

Clients «e—>

2x slave

replicas on <5

shared

Compute Storage
Server Server
BTrDB Ceph

Mon
10Gbit
DISTIL | | | OSDS
Y
N
Mongo 28x
(4TB J

Servers

20 cores (40 virtual)
256GB RAM

4 cores (8 virtual)
128GB RAM




Statistic queries : visualisation

4250925

| I | L

8,000

6,000+

= 4,000

2,000+

U T == T T T T 1
October 2015 April July October
Sat Aug 16, 2014 03:57:51 Fri Nov 20, 2015 06:21:13

Time [America/Los_Angeles (PST)]




Statistic queries : visualisation

4250925

2125463 ] I | About 4 billion datapoints | |

0l
8,000

Lo o i P o) P
" : - ] S ‘ T““T'TM*MW

6,000+
= 4,000

2,000+

D T == T T T T 1
October 2015 April July October
Sat Aug 16, 2014 03:57:51 Fri Nov 20, 2015 06:21:13

Time [America/Los_Angeles (PST)]




Statistic queries : visualisation

4250925 -
In | | U
04— S

8,000
prbitdonst Lamas ] ety ‘ “ql-n_ s e ytrbertbiantra el et

6,000+

= 4,000

2,000+

D T == T T T T 1
October 2015 April July October
Sat Aug 16, 2014 03:57:51 Fri Nov 20, 2015 06:21:13

Time [America/Los_Angeles (PST)]




Statistic queries : visualisation

2139863
1069932 v

6,500+
6,000+
T T T 1
2015 April July
Sun Dec 14, 2014 09:19:34 Thu Sep 17, 2015 07:27:33

Time [America/Los_Angeles (PST)]



Statistic queries : visualisation

146342 L L 1
73171~
0_

L _MWWWW

7,000+

6,500

6,000

T T T 1
Apr 12 Apr 19 Apr 26
Mon Apr 06, 2015 16:46:24 Sun Apr 26, 2015 08:39:39

Time [America/Los_Angeles (PST)]



Statistic queries : visualisation

4124
2062

7,500

7,000+

6,500+

6,000+

03 AM 06 AM 09 AM 12 PM 03 PM
Thu Apr 16, 2015 01:06:04 Thu Apr 16, 2015 17:10:16

Time [America/Los_Angeles (PST)]



Statistic queries : visualisation

7,500+

7,000+

6,500

6,000

T T T T
09:19 09:20 09:21 09:22
Thu Apr 16, 2015 09:18:59 Thu Apr 16, 2015 09:22:3

Time [America/Los_Angeles (PST)]



Statistic queries : visualisation

D'HI\IIIHIIIIIII\|||\||lllIIHIIHII\IIIHIIIIIIH

-----------------

ooooooooo
..........
. @
-

7,000+
50 datapoints
> 6,500 . v (8 orders of magnitude)
6,000

100 200 300 400
Time [America/Los_Angeles (PST)]

Thu Apr 16, 2015 09:20:29 Thu Apr 16, 2015 09:20:29



query latency [ms]

350

300

250

200

150

100

50

I—I
| — — =
= = =
{11
41T -

4.3 billion underlying points 2062 underlying points

244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223

resolution [ns per record]



query latency [ms]

350

300

250

200

150

100

50

.

4.3 billion underlying points 2062 underlying points
244 2!13 24I12 2!11 2;10 2?29 2;)8 23I)7 2:;6 23I)5 2;)4 2?I)3 2?:2 2?I)1 2?20 2;9 22IS 22I7 22IG 22I5 22I4 223
resolution [ns per record]




query latency [ms]

350

300

250

200

150

100

50

4.3 billion underlying points

it

2062 underlying points

\‘_

244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223

resolution [ns per record]



query latency [ms]

350

300

250

200

150

100

50

| | | | | | + | | | | |
T |
| |
o — | _
I |
| -
I (I
I [
| |
T ]! |
| P
|| I I |
T I L |
: | L |
| L
- 1 Lo I
I l
i 1

4.3 billion underlying points

2062 underlying points

\‘_

244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223

resolution [ns per record]



query latency [ms]

350

300

250

200

150

100t

50|

4.3 billion underlying points

2062 underlying points

|____
|___
I___
o
o
l___
= = i
|__
—|:|:|—
- - -
- 1 -
o
11 -

\‘_

244 243 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223

resolution [ns per record]



DISTIL - Eventually consistent derivative streams

e B=1f(A)
o Find differences in A since last update of B - CalculateDiff()
o Compute f(AA) and update B
o If operation succeeds, update B's metadata with new version of A

e Sometimes keep A up to date all the time
e Sometimes materialize A just in time when needed

A Immutable B
Versioned stream algorithm Versioned stream

e.g Sliding window quartiles algorithm, uuid(A), ver(A)



summary

By leveraging qualities about the data

Handle raw inserts/requests substantially faster than existing solutions
(>16x faster than the new Cassandra C++ rewrite)

Can analyse years of data in milliseconds, for a significant set of queries
Aggregates are guaranteed to be consistent

Can build elegant eventual consistency systems using multiversioning

Although simpler, relevant to a massive set of streams. Almost all physical
quantity measurement quantities are scalar or vector-of-scalar streams.



