BTrDB: Optimizing Storage System Design for Timeseries Processing

Michael P Andersen, David E. Culler University of California, Berkeley

Fast scalar stream telemetry

Overview

- Challenges with how this data is used and processed
- Solving this with the abstraction and operations that BTrDB provides
- BTrDB data structures
- Performance evaluation of a BTrDB Go implementation
- Idempotent distillation operations leveraging fast changeset calculation

Fast scalar stream telemetry

A stream is a list of (timestamp<int64>, value<float64>) tuples

Challenges with this fast scalar telemetry

Data characteristics:

- High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
- Varying lag and out of order delivery: e.g. delivered over intermittent LTE
- High precision timestamps: nanoseconds

Analysis characteristics:

• Aggregated queries more common than full-resolution queries

14 month overview from **just one** uPMU: 6 streams: 24 billion datapoints, 400GB of data

Challenges with this fast scalar telemetry

Data characteristics:

- High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
- Varying lag and out of order delivery: e.g. delivered over intermittent LTE
- High precision timestamps: nanoseconds

Analysis characteristics:

- Aggregated queries more common than full-resolution queries
- Aggregation windows are much larger than the sample interval

Challenges with this fast scalar telemetry

Data characteristics:

- High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
- Varying lag and out of order delivery: e.g. delivered over intermittent LTE
- High precision timestamps: nanoseconds

Analysis characteristics:

- Aggregated queries more common than full-resolution queries
- Aggregation windows are much larger than the sample interval
- Data transformed in a DAG, creating multiple dependent streams

Why can we not solve this with existing DBs

- Density:
 - 1.4 Million values/s/node raw data
 - >10 Million values/s /nodederived streams
 - Existing throughput is too low (<< 1 Million values/s/node)
- Aggregation capability mismatch:
 - Either done Just In Time (query time aggregation) too expensive for 100's of GB
 - Or done at insert time doesn't handle out of order / changed data
 - Don't guarantee consistency of aggregate
- Hard to support analysis DAG:
 - Require per-consumer state
 - Don't provide snapshot features needed for idempotent analysis
 - Don't guarantee consistency of result streams

Why do these shortcomings exist?

- Often, because they do too much:
 - Designed for data that is complex, multidimensional
 - Support queries based on multiple indexes, or on values
 - Find me **log messages** where the type is **error**
 - Find the sum of session times where the advert is from vendor X

Simple Abstraction for Timeseries Database

QueryRange(uuid, start_time, end_time)

-> <[<time, value>]>

->

- InsertValues(uuid, [<time, value>])
- DeleteRange(uuid, start_time, end_time)
 ->

Would this work?

- Analyse recently changed data HARD
 - Not always at the end of the stream
- Perform computation idempotently HARD
 - Snapshot the stream
- Compute dependent streams: B = f(A) HARD
 - Run a function over everything in A that has changed since last computation
- Locate interesting events in large quantities of data HARD
 - In the synchrophasors project, an event is ~100ms, and a year's worth of data from a single device is 670 GB
 - 'Interesting' is hard to define, but it often means:
 - above or below a threshold
 - more than X from the mean
 - having a different density than the rest (holes, timebase overlapping etc)

Improved Abstraction for Timeseries Database

- QueryRange(uuid, start_time, end_time, **version**)
 - -> (**version**, List of (time, value))
- InsertValues(uuid, [<time, value>])

-> version

DeleteRange(uuid, start_time, end_time)
 -> version

- StatisticalWindow(uuid, start_time, end_time, version, windowsize)
 - -> (version, List of (time, min, mean, max, count))
- ComputeDiff(uuid, fromversion, toversion, version, resolution)
 - -> List of (starttime, endttime)

Would this work?

- Analyse recently changed data ComputeDiff
 - Not always at the end of the stream
- Perform computation idempotently Version
 - Snapshot the stream
- Compute dependent streams: B = f(A) ComputeDiff + Version
 - Run a function over everything in A that has changed since last computation
- Locate interesting events in large quantities of data StatisticalWindow
 - In the synchrophasors project, an event is ~100ms, and a year's worth of data from a single device is 670 GB
 - 'Interesting' is hard to define, but it often means:
 - above or below a threshold Mean/Min/Max
 - more than X from the mean
 - having a different density than the rest (holes, timebase overlapping etc) Count

A Go implementation of BTrDB

A Go implementation of BTrDB

BTrDB Tree - a datastructure for this abstraction

Copy on write K-ary Tree Partitioning static time (1933 to 2079)

Leaf nodes

- Time, value pairs + length

Internal nodes

- Pointers to children
- Version annotations for children
- Aggregates for children
 - Min, Mean, Max, Count
 - Any associative operator

BTrDB Tree - a datastructure for this abstraction

Copy on write K-ary Tree Partitioning static time (1933 to 2079)

Leaf nodes

- Time, value pairs + length

Internal nodes

- Pointers to children
- Version annotations for children
- Aggregates for children
 - Min, Mean, Max, Count
 - Any associative operator

More on the tree

There are good reasons for doing aggregates at commit time, in the tree:

- Data already in memory, nodes already need COW: no additional IO
- If version is visible, root was written therefore aggregates are consistent
- They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

• Edges use native addresses, directly resolvable by underlying storage

A Go implementation of BTrDB

More on the tree

Why do aggregates in the tree?

- Data already in memory: no additional IO
- If version is visible, root was written therefore aggregates are consistent
- They don't use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

- Edges use native addresses, directly resolvable by underlying storage
- Only the root of the tree requires translation
 - uuid -> native address of the root

A Go implementation of BTrDB

Evaluation

Raw throughput with chronological random inserts and queries on EC2

A Go implementation of BTrDB

A Go implementation of BTrDB

Out of order performance characteristics

	When insertion was	
Throughput [million pt/s] for	Chrono.	Random
Insert	28.12	27.73
Cold query in chrono. order	31.41	31.67
Cold query in same order	-	32.61
Cold query in random order	29.67	28.26
Warm query in chrono. order	114.1	116.2
Warm query in same order	-	119.0
Warm query in random order	113.7	117.2

Evaluation

Statistical queries on a production server

DISTIL - Eventually consistent derivative streams

• B = f(A)

- Find differences in A since last update of B *CalculateDiff()*
- \circ Compute f(ΔA) and update B
- If operation succeeds, update B's metadata with new version of A
- Sometimes keep A up to date all the time
- Sometimes materialize A just in time when needed

Summary

By leveraging qualities about the data

- Handle raw inserts/requests substantially faster than existing solutions (>16x faster than the new Cassandra C++ rewrite)
- Can analyse years of data in milliseconds, for a significant set of queries
- Aggregates are guaranteed to be consistent
- Can build elegant eventual consistency systems using multiversioning

Although simpler, relevant to a massive set of streams. Almost all physical quantity measurement quantities are scalar or vector-of-scalar streams.