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Fast scalar stream telemetry



Overview
● Challenges with how this data is used and processed
● Solving this with the abstraction and operations that BTrDB provides
● BTrDB data structures
● Performance evaluation of a BTrDB Go implementation
● Idempotent distillation operations leveraging fast changeset calculation



Fast scalar stream telemetry

A stream is a list of (timestamp<int64> , value<float64>) tuples



Challenges with this fast scalar telemetry
Data characteristics:

● High density: e.g. uPMUs are 120 Hz per stream, 1.4 kHz per device
● Varying lag and out of order delivery: e.g. delivered over intermittent LTE
● High precision timestamps: nanoseconds

Analysis characteristics:

● Aggregated queries more common than full-resolution queries



14 month overview from just one uPMU: 6 streams: 
24 billion datapoints, 400GB of data
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One pixel column ^ is 4.2 million data points
Aggregation window is 6 orders of magnitude bigger than sample interval
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DISTIL



Why can we not solve this with existing DBs
● Density:

■ 1.4 Million values/s/node raw data
■ >10 Million values/s /nodederived streams

○ Existing throughput is too low (<< 1 Million values/s/node)

● Aggregation capability mismatch:
○ Either done Just In Time (query time aggregation) - too expensive for 100’s of GB
○ Or done at insert time - doesn’t handle out of order / changed data
○ Don’t guarantee consistency of aggregate

● Hard to support analysis DAG:
○ Require per-consumer state
○ Don’t provide snapshot features - needed for idempotent analysis
○ Don’t guarantee consistency of result streams



Why do these shortcomings exist?
● Often, because they do too much:

○ Designed for data that is complex, multidimensional
○ Support queries based on multiple indexes, or on values

■ Find me log messages where the type is error
■ Find the sum of session times where the advert is from vendor X



Simple Abstraction for Timeseries Database
● QueryRange(uuid, start_time, end_time)

->  <[<time, value>]>
● InsertValues(uuid, [<time, value>])

->   
● DeleteRange(uuid, start_time, end_time)

->  



Would this work?
● Analyse recently changed data - HARD

○ Not always at the end of the stream

● Perform computation idempotently - HARD
○ Snapshot the stream

● Compute dependent streams:  B = f(A) - HARD
○ Run a function over everything in A that has changed since last computation 

● Locate interesting events in large quantities of data - HARD

○ In the synchrophasors project, an event is ~100ms, and a year’s worth of data from a 
single device is 670 GB

○ ‘Interesting’ is hard to define, but it often means:
■ above or below a threshold
■ more than X from the mean
■ having a different density than the rest (holes, timebase overlapping etc)



Improved Abstraction for Timeseries Database
● QueryRange(uuid, start_time, end_time, version)

->  (version, List of (time, value) )
● InsertValues(uuid, [<time, value>])

->   version
● DeleteRange(uuid, start_time, end_time)

->  version

● StatisticalWindow(uuid, start_time, end_time, version, windowsize)
->  (version, List of (time, min, mean, max, count) )

● ComputeDiff(uuid, fromversion, toversion, version, resolution)
->  List of (starttime, endttime)



Would this work?
● Analyse recently changed data - ComputeDiff

○ Not always at the end of the stream

● Perform computation idempotently - Version
○ Snapshot the stream

● Compute dependent streams:  B = f(A) - ComputeDiff + Version
○ Run a function over everything in A that has changed since last computation 

● Locate interesting events in large quantities of data - StatisticalWindow

○ In the synchrophasors project, an event is ~100ms, and a year’s worth of data from a 
single device is 670 GB

○ ‘Interesting’ is hard to define, but it often means:
■ above or below a threshold - Mean/Min/Max
■ more than X from the mean 
■ having a different density than the rest (holes, timebase overlapping etc) - Count



A Go implementation of BTrDB



A Go implementation of BTrDB



BTrDB Tree - a datastructure for this abstraction
Copy on write K-ary Tree 
Partitioning static time (1933 to 2079)

Leaf nodes
- Time, value pairs + length

Internal nodes
- Pointers to children
- Version annotations for children
- Aggregates for children
     - Min, Mean, Max, Count
     - Any associative operator
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More on the tree
There are good reasons for doing aggregates at commit time, in the tree:

● Data already in memory, nodes already need COW: no additional IO
● If version is visible, root was written therefore aggregates are consistent
● They don’t use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

● Edges use native addresses, directly resolvable by underlying storage



A Go implementation of BTrDB



More on the tree
Why do aggregates in the tree?

● Data already in memory: no additional IO
● If version is visible, root was written therefore aggregates are consistent
● They don’t use much space: 0.3% of a K=64 tree

How to reduce RTTs in traversing tree?

● Edges use native addresses, directly resolvable by underlying storage
● Only the root of the tree requires translation

○ uuid -> native address of the root



A Go implementation of BTrDB



Evaluation
Raw throughput with chronological
random inserts and queries on EC2



833 MB/s



A Go implementation of BTrDB



833 MB/s



A Go implementation of BTrDB



Out of order performance characteristics



Evaluation
Statistical queries on a 

production server



Statistic queries : visualisation



Statistic queries : visualisation

About 4 billion datapoints



Statistic queries : visualisation



Statistic queries : visualisation



Statistic queries : visualisation



Statistic queries : visualisation



Statistic queries : visualisation



Statistic queries : visualisation

50 datapoints
(8 orders of magnitude)













DISTIL - Eventually consistent derivative streams
● B = f(A)

○ Find differences in A since last update of B - CalculateDiff()
○ Compute f(ΔA) and update B
○ If operation succeeds, update B’s metadata with new version of A

● Sometimes keep A up to date all the time
● Sometimes materialize A just in time when needed

A
Versioned stream

Immutable 
algorithm

B
Versioned stream

algorithm, uuid(A), ver(A)e.g Sliding window quartiles



Summary
By leveraging qualities about the data

● Handle raw inserts/requests substantially faster than existing solutions 
(>16x faster than the new Cassandra C++ rewrite)

● Can analyse years of data in milliseconds, for a significant set of queries
● Aggregates are guaranteed to be consistent
● Can build elegant eventual consistency systems using multiversioning

Although simpler, relevant to a massive set of streams. Almost all physical 
quantity measurement quantities are scalar or vector-of-scalar streams.


