
NV-Tree
Reducing Consistency Cost for 

NVM-based Single Level Systems

Jun Yang1, Qingsong Wei1, Cheng Chen1, Chundong Wang1, 
Khai Leong Yong1 and Bingsheng He2

1 Data Storage Institute, A-STAR, Singapore
2 Nanyang Technological University



Overview
• Providing data consistency for B+tree or its variants in Non-volatile 

Memory is costly
– Ordering memory writes is non-trivial and expensive in NVM
– Logs are needed because the size of atomic writes is limited
– Keeping in-node data sorted produces unnecessary ordered writes

• NV-Tree
– Consistent, log-free and cache-optimized
– Decouple leaf nodes (LNs) and internal nodes (INs)

• LN
– Enforce consistency
– Unsorted keys with append-only scheme

• IN
– Reconstructable, no consistency guaranteed
– Sorted keys and cache-optimized layout

• Results:
– Reduce CPU cache line flush by 82-96%
– 12X faster than existing approaches under write-intensive workloads
– NV-Store, a KV-store prototype

• Up to 4.8X faster than Redis under YCSB workloads

Pg 2



Persistency boundary

Motivation
• Next generation of non-volatile memory (NVM)

– Provides DRAM-like performance and disk-like persistency
– Can replace both DRAM and disk to build a single level system

• In-NVM data consistency is required
• Ordering memory writes

– Fundamental for keeping data consistency
– Non-trivial in NVM due to CPU design

• E.g, w1, (MFENCE,CLFLUSH,MFENCE), w2, (MFENCE,CLFLUSH,MFENCE)

CPU
Cache line

Cache line

Cache line

NVM

Memory Bus

Pg 3



Motivation

• Making B+tree or its variants consistent is expensive

B+tree : 16X slower

CDDS-tree : 20X slower

CPU cache line invalidation 
is amplified due to CLFLUSH

Sorting entries in LN produces 
up to >90% of total CLFLUSH

Pg 4



NV-Tree Overview

• Decouple LN and IN
– Critical data – LN
– Reconstructable data - IN

• Unsorted LN
– entries are encapsulated 

and appended in LN

• Cache-optimized IN

Pg 5



IN Design

• IN layout
– All INs are stored in a continuous memory space

• Memory address of node id
= addr + id * size_IN
addr : memory address of node 0
size_IN : size of a IN

– Can be located without pointers
– No consistency required

• Locating the next IN during tree traverse
– E.g. 

one IN have m children
Memory address of the k-th (k = 1 .. m) child of node id
= addr + (id * m + k) * size_IN

Pg 6



LN Design

• LN layout
– Dynamically allocated and aligned to CPU cache line

• Every LN has a pointer from PLN
– Data is encapsulated in LN_Elements

• LN_Elements are unsorted and append-only
• In-node search is bounded by nElements
• No partial modification

1. Append LN_Element, (MFENCE, CLFLUSH, MFENCE)
2. Atomically increase nElements by 1 (8-byte), 

(MFENCE,CLFLUSH, MFENCE)
• Reads are never blocked by writes

Pg 7



Insert/Delete/Update

Insert (7, b) Delete (6, a) Update (8, c) -> (8, y)

Pg 8



2

Split
• No partial split

– All data modified by unfinished split is invisible upon system failure
– Those data become visible after a 8-byte atomic update

• Split / Replace / Merge
– Minimal Fill Factor (MFF)

Percentage of Valid Elements 
in Full Node

Percentage of Total Elements 
in Right Sibling Action

> MFF - Split

< MFF > MFF Replace

< MFF < MFF Merge

Pg 9



Rebuilding

• Triggered when a PLN is full
– Due to the fixed position of each IN

• Strategy
– Rebuild-from-PLN

• Reuse the existing <key, LN_pointer> array in PLNs
– Rebuild-from-LN

Pg 10



Recovery

• Instant recovery
– Normal shutdown and NVM has enough space

• Keep all INs in NVM

• Otherwise
– Rebuilding-from-LN

Shutdown Type Shutdown Action Recovery Action

Normal Store all INs to NVM Retrieve the root

System Failure N/A Rebuild-from-LN

Pg 12



Experiment Setup

• NVDIMM server
– Intel Xeon E5-2650

• 2.4GHz, 512KB/2MB/20MB L1/L2/L3 Cache
– 16GB DRAM, 16GB NVDIMM

• NVDIMM has the same performance as DRAM

Pg 13



Insertion Performance
• LCB+Tree (Log-based Consistent B+Tree)
• CDDS-Tree
• NV-Tree

LCB+Tree CDDS-Tree

8X 12X

LCB+Tree CDDS-Tree

1M 15.2X 8X

10M 6.3X 9.7X

100M 5.3X 8.2X

Pg 14



Update/Delete/Search Throughput

• Update

• Delete

• Search

LCB+Tree CDDS-Tree

5.6X 8.5X

Comparable to CDDS-Tree with larger nodes

Comparable to both competitors

Pg 15



Mixed Workloads

• 1 million operations (insertion/search) 
– On an existing NV-Tree with 1 million entries

w/r LCB+Tree CDDS-Tree

90%/10% 6.6X 10X

10%/90% 2X 2.8X

Pg 16



CPU Cache Efficiency

• Intel vTune Amplifer
– Number of LOADs

– Number of L3 Misses

LCB+Tree CDDS-Tree

Up to 90%
reduced

Up to 92%
reduced

LCB+Tree CDDS-Tree

Up to 83%
reduced

Up to 90%
reduced

Pg 17



Rebuilding

• 1/10/100 Million Insertion, 512B/1KB/2KB/4KB Node Size
– Rebuilding time is neglectable

• 0.01% - 2.77%

• Rebuilding strategy
– Rebuild-from-PLN is 22% - 47% faster

Pg 18



End-to-End Performance

• KV-Stores
– NV-Store
– Redis

• Volatile / Consistent

• Workloads
– YCSB

• StatusUpdate (read-latest)

• SessionStore (update-heavy)

5% Insertion 
Up to 3.2X speedup

50%/50% Search/Update
Up to 4.8X speedup

Pg 19



Additional Materials in The Paper

• NV-Tree performance simulation on different types of NVM
– Different read/write performance

• STT-MRAM / PCM

• Future hardware support
– Epoch
– CLWB/CLFLUSHOPT/PCOMMIT

Pg 20



Thank You!

Q & a

Email: yangju@dsi.a-star.edu.sg

mailto:yangju@dsi.a-star.edu.sg

	NV-Tree�Reducing Consistency Cost for NVM-based Single Level Systems
	Overview
	Motivation
	Motivation
	NV-Tree Overview
	IN Design
	LN Design
	Insert/Delete/Update
	Split
	Rebuilding
	Recovery
	Experiment Setup
	Insertion Performance
	Update/Delete/Search Throughput
	Mixed Workloads
	CPU Cache Efficiency
	Rebuilding
	End-to-End Performance
	Additional Materials in The Paper
	Thank You!��Q & A

