Towards SLO Complying SSDs Through OPS Isolation

13th USENIX Conference on FAST 2015

Jaeho Kim (University of Seoul, Korea) Donghee Lee (University of Seoul) Sam H. Noh (Hongik University)

Applications of Flash Memory

- Target • Area of flash storage environment From embedded to server storage — APP OS OS OS OS **Virtualization Layer** 7 🛞 🖻 🕘 🧰 🍟) 🖂 🧭 🚺 A Firmston SSD net.
 - Application field

2

Introduction & Motivation

- Virtualization system
 - Need to satisfy Service Level Objective (SLO) for each VM
 - SLO is provided through hardware resource isolation
- Existing solutions for isolating CPU and memory
 - Distributed resource scheduler [VMware inc.]
 - Memory resource management in VMware ESX server [SIGOPS OSR 2002]

Do SSDs provide decent performance isolation?

- Does each VM proportionally consume I/O bandwidth of shared SSD among VMs?
- How does proportionality vary as state of SSD is varied?

Initial Experiments on Commercial SSD

- Linux kernel-based virtual machine (KVM) on 4 VMs
- Proportional I/O weight (by Cgroups feature in Linux kernel 3.13.x)
 - VM-x: x is I/O weight value (Higher value \rightarrow Allocate higher throughput)
- SSD as shared storage
 - 128GB capacity, SATA3 interface, MLC Flash
 - clean SSD: empty SSD
 - aged SSD: full SSD (busy performing garbage collection)
 - Aging is conducted by issuing 4KB ~ 32KB sized random writes for a total write that exceeds the SSD capacity
- Each VM runs the same workload concurrently
 - Financial, MSN, and Exchange

Results: Proportionality of I/O Bandwidth

- For all workloads, on HDD, proportionality is close to I/O weight except for VM-10
- Proportionality deviation is worse for aged SSD than clean SSD

Monitor Internal Workings of SSD

- Commercial SSD: Proprietary, black box SSDs
- Monitor using Simulator
 - SSD simulator: DiskSim SSD Extension
 - Workloads: Financial, MSN, and Exchange
 - Traces are captured as VMs run concurrently on real system

Analysis #1 : Mixture of Data

• Within block (GC unit): mixture of data from all VMs

Data layout of conventional SSD

Analysis #2 :

Interference among VMs during GC

 Movement of data: live pages of workloads other than the one invoking GC

Analysis #3: Work induced by other VMs

 From one VM's viewpoint: doing unnecessary work induc ed by other workloads

More Closely

- GC leads to interference problem among VMs
- GC operation employed by one VM is burdened with other VM's pages

Avoiding Interference

- Cost of GC is major factor in SSD I/O performance
- Each VM should pay only for its own GC operation

Proposed scheme: OPS isolation

- Dedicate flash memory blocks, including OPS, to each VM separately when allocating pages to VMs
 - ➔ Prevent interference during GC

VM OPS Allocation

• How much OPS for each VMs to satisfy SLO?

How to Meet SLO (IOPS) of each VM? : Dynamically adjusting OPS

Evaluation of OPS isolation

•	Eva	luation	environment
---	-----	---------	-------------

- SSD simulator: DiskSim SSD Extension
 - FTL: Page-mapped FTL
 - GC: Greedy policy
 - Aged state SSD

- Workloads:

- Financial, MSN, and Exchange
 - Traces are captured as VMs run concurrently on real system

Host interface

• Tags of VM ID are informed to SSD

Parameter	Description
Page size	4KB
Block size	512KB
Page read	60us
Page write	800us
Block erase	1.5ms
Xfer latency (Page unit)	102us
OPS	5%

Results

- *x*-axis: groups of VMs that are executed concurrently
- *y*-axis: proportionality of I/O bandwidth relative to smallest weight

Conclusion

- Performance SLOs can not be satisfied with current commer cial SSDs
 - Garbage collection interference among VMs
- Propose OPS isolation, allocates flash memory blocks so that VM is isolated from other VMs
 - Do not allow mix of pages in same block
 - Size of OPS is dynamically adjusted per VM
- Evaluation showed that OPS isolation is an effective way for SSDs to provide performance SLOs to competing VMs

Thank you! & Questions?

Towards SLO Complying SSDs Through OPS Isolation

Please visit our poster at tonight.

Jaeho Kim (<u>kjhnet@gmail.com</u>, University of Seoul, Korea) Donghee Lee (University of Seoul) Sam H. Noh (Hongik University)