
MemC3: MemCache with CLOCK
and Concurrent Cuckoo Hashing

Bin Fan (CMU),
Dave Andersen (CMU), Michael Kaminsky (Intel Labs)

NSDI 2013

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 1

Goal: Improve Memcached

1. Reduce space overhead (bytes/key)

2. Improve performance (queries/sec)

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 2

Overview
•  Previous Work: Sharding

•  Avoid inter-thread synchronization
– e.g., dedicated cores [Berezecki11]

•  Hotspot? Memory Efficiency?

•  Our Approach: Algorithm Engineering
•  Apply concurrent / space-efficient data structures

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 3

MemC3 vs. Memcached
3x throughput
30% more small key-value items

Memcached Overview

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 4

•  A DRAM-based key-value store
•  GET(key)
•  SET(key, value)

•  LRU eviction for high hit rate

•  Typical use:
•  Speed up webservers
•  Alleviate db load

Webserver Webserver

Memcached
server

Webserver

get(x) set(y,"123") get(z)

Database

Memcached
server

on misson miss

Typical Workloads

•  Watch the next talk!

•  Often used for small objects (Facebook[Atikoglu12])
– 90% keys < 31 bytes
– Some apps only use 2-byte values

•  Tens of millions of queries per second for large
memcached clusters (Facebook[Nishtala13])

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 5

Small Objects, High Rate

Bin Fan © April 13!
!

http://www.pdl.cmu.edu/ 6

Hash table
w/ chaining

K V

K V

K V K V

K V

•  Key-Value Index:
–  Chaining hash table

Memcached: Core Data Structures

Memcached: Core Data Structures

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 7

•  Key-Value Index:
–  Chaining hash table

Hash table
w/ chaining

K V

K V

K V K V

K V

LRU header

Doubly-linked-list
(for each slab)

•  LRU Eviction:
–  Doubly-linked lists

Problems We Solve
•  Single-node scalability

•  Accessing hash table and updating LRU are serialized

•  Space overhead
•  56-byte header per object

– Including 3 pointers and 1 refcount
– For a 100B object, overhead > 50%

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 8

Solutions
Optimistic cuckoo hashing

•  Better memory efficiency: 95% table occupancy
•  Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
•  Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 9

focus of this talk

described in paper

Solutions
Optimistic cuckoo hashing

•  Better memory efficiency: 95% table occupancy
•  Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
•  Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 10

focus of this talk

•  Chaining items hashed in same bucket:

Good: simple (Data Structure 101)

Bad: low cache locality:

 (dependent pointer dereference)

Bad: pointer costs space

Memcached Default Hash Table

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 11

K V K V K Vlookup

Linear Probing

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 12

•  Probing consecutive buckets for vacancy

Good: simple

Good: cache friendly

Bad: poor memory efficiency:

 (if occupancy > 50%, lookup needs to search a
long chain)

lookup

Cuckoo Hashing[Pagh04]
•  Each key has two candidate buckets

•  Assigned by hash1(key), hash2(key)
•  Stored in one of its candidate buckets

•  Lookup: read 2 buckets in parallel

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 13

hash1(x)

hash2(x)

0!

1!

2!

3!

4!

5!

6!

7!

lookup x

Cuckoo Hashing[Pagh04]
•  Each key has two candidate buckets

•  Assigned by hash1(key), hash2(key)
•  Stored in one of its candidate buckets

•  Lookup: read 2 buckets in parallel

•  Insert:
•  Perform key displacement

recursively
•  Still O(1) on average [Pagh04]

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 14

0!

1!

2!

3!

4!

5!

6!

7!

x

hash1(x)

a

b hash2(x)

hash1(b) c

hash2(c)
insert

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 15

Increase Set-Associativity

0
1
2
3
4
5
6
7

x

b

a

x

0
1
2
3
4
5
6
7

a c d

fe g h

b

•  2 cacheline-sized reads per lookup
•  50% space utilized

•  2 cacheline-sized reads per lookup
•  95% space utilized!

Each bucket still fits in 1 cacheline

Solutions
Optimistic cuckoo hashing

•  Better memory efficiency: 95% table occupancy
•  Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
•  Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 16

focus of this talk

False Miss Problem
•  During insertion:

–  always a “floating” item during insertion
–  a reader may miss

this floating item

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 17

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Floating Item

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 18

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 19

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x
b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 20

0!

1!

2!

3!

4!

5!

6!

7!

a

Insert x

b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 21

0!

1!

2!

3!

4!

5!

6!

7!

a
Insert x

b

Our Solution: 2-Step Insert
•  Step1: Find a cuckoo path to an empty slot

without editing buckets

•  Step2: Move hole backwards:

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 22

0!

1!

2!

3!

4!

5!

6!

7!

a

x

b

Only need to ensure each move
is atomic w.r.t. reader

How to Ensure Atomic Move
•  e.g., move key “b” from bucket 4 to bucket 2

•  A simple implementation:

•  Our approach: Optimistic locking
•  Optimized for read-heavy workloads
•  Each key mapped to a version counter
•  Reader detects version change

(described in paper)

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 23

0!

1!

2!

3!

4!

5!

6!

7!

b

Lock bucket 2 and 4
Move key
Unlock bucket 2 and 4

How to Coordinate Writers

•  Simple (current) solution:

•  Serialize inserts
•  Works fine with read-heavy workload

•  Ongoing work: allow multiple writers

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 24

Solutions
Optimistic cuckoo hashing

•  Better memory efficiency: 95% table occupancy
•  Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
•  Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 25

focus of this talk

2ptr/key => 1bit/key, concurrent update

Solutions
Optimistic cuckoo hashing

•  Better memory efficiency: 95% table occupancy
•  Higher concurrency: single-writer/multi-reader

CLOCK-based LRU eviction
•  Better space efficiency and concurrency

Additional algo & tuning improvements

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 26

focus of this talk

2ptr/key => 1bit/key, concurrent update

Avoid unnecessary full-key comparisons on hash collision

Problems We Solve
•  Single-node scalability

•  Accessing hash table and updating LRU are serialized
•  GET requires no mutex
•  Single-writer/multiple-reader

•  Space overhead

•  56-byte header per object
•  3 pointers + 1 refcount => 1 pointer + 1 refbit

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 27

1.74% 1.9%

12.79% 14.28%

21.54%

47.89%

0%

10%

20%

30%

40%

50%

60%

Hash Table Microbenchmark

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 28

Lookups all hit

6 local threads reading hash tables of ~1GB

Base Chaining
w/ Bkt Lock

Optimistic
Cuckoo

Base Chaining
w/ Bkt Lock

Optimistic
Cuckoo

Lookups all miss

Server: Low Power Xeon CPU w/ 12 cores, 12 MB L3 cache

M
ill

io
n

Lo
ok

up
s/

se
c

235%

68%

1.74% 1.9%

12.79% 14.28%

21.54%

47.89%

0%

10%

20%

30%

40%

50%

60%

Hash Table Microbenchmark

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 29

Lookups all hit

6 local threads reading hash tables of ~1GB

Base Chaining
w/ Bkt Lock

Optimistic
Cuckoo

Base Chaining
w/ Bkt Lock

Optimistic
Cuckoo

Lookups all miss

Server: Low Power Xeon CPU w/ 12 cores, 12 MB L3 cache

M
ill

io
n

Lo
ok

up
s/

se
c

235%

68%

0"

1"

2"

3"

4"

5"

1" 2" 4" 6" 8" 10" 12" 14" 16"

M
Q
PS
%

Number%of%Server%Threads%%

End-to-end Performance

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 30

50 remote clients generate workloads

MemC3

Sharding

Memcached

16-Byte key, 32-Byte Value, 95% GET, 5% SET, zipf distributed

max tput 4.3 MOPS

max tput 1.5 MOPS

max tput 0.6 MOPS

Conclusion
•  Optimistic cuckoo hashing

•  High space efficiency
•  Optimized for read-heavy workloads
•  Source Code available:

 github.com/efficient/libcuckoo

•  MemC3 improves Memcached
•  3x throughput, 30% more (small) objects
•  Optimistic Cuckoo Hashing, CLOCK, other system

tuning

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 31

References
[Atikoglu12] Workload analysis of a large-scale key- value store.

[Berezecki11] Many-core key-value store

[Nishtala13] Scaling Memcache at Facebook

[Pagh04] Cuckoo hashing

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 32

Q & A
•  Thanks!

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 33

