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Goal: Improve Memcached 

1. Reduce space overhead (bytes/key) 

2. Improve performance (queries/sec) 
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Overview 
•  Previous Work: Sharding 

•  Avoid inter-thread synchronization 
– e.g., dedicated cores [Berezecki11]   

•  Hotspot? Memory Efficiency?  

•  Our Approach: Algorithm Engineering 
•  Apply concurrent / space-efficient data structures  
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MemC3 vs. Memcached 
3x throughput 
30% more small key-value items   



Memcached Overview 
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•  A DRAM-based key-value store 
•  GET(key)  
•  SET(key, value) 

•  LRU eviction for high hit rate 

•  Typical use: 
•  Speed up webservers 
•  Alleviate db load 
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server 
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Typical Workloads 

•  Watch the next talk! 

•  Often used for small objects (Facebook[Atikoglu12]) 
– 90% keys < 31 bytes 
– Some apps only use 2-byte values 

•  Tens of millions of queries per second for large 
memcached clusters (Facebook[Nishtala13]) 
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Small Objects, High Rate 
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Hash table 
w/ chaining
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•  Key-Value Index: 
–  Chaining hash table 

Memcached: Core Data Structures 



Memcached: Core Data Structures 
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•  Key-Value Index: 
–  Chaining hash table 

Hash table 
w/ chaining

K V

K V
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K V

LRU header

Doubly-linked-list
(for each slab) 

•  LRU Eviction: 
–  Doubly-linked lists 



Problems We Solve 
•  Single-node scalability 

•  Accessing hash table and updating LRU are serialized 

•  Space overhead 
•  56-byte header per object  

– Including 3 pointers and 1 refcount 
– For a 100B object, overhead > 50%  
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Solutions 
Optimistic cuckoo hashing 

•  Better memory efficiency: 95% table occupancy 
•  Higher concurrency: single-writer/multi-reader 

CLOCK-based LRU eviction 
•  Better space efficiency and concurrency 

 
Additional algo & tuning improvements 
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focus of this talk 
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•  Chaining items hashed in same bucket: 

 
Good: simple (Data Structure 101) 
 
Bad: low cache locality:  

 (dependent pointer dereference) 
 
Bad: pointer costs space 

Memcached Default Hash Table  
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Linear Probing 
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•  Probing consecutive buckets for vacancy 
 
Good: simple 
 
Good: cache friendly 
 
Bad: poor memory efficiency:  

 ( if occupancy > 50%, lookup needs to search a 
long chain) 

lookup



Cuckoo Hashing[Pagh04] 
•  Each key has two candidate buckets 

•  Assigned by hash1(key), hash2(key)  
•  Stored in one of its candidate buckets 

•  Lookup: read 2 buckets in parallel 
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Cuckoo Hashing[Pagh04] 
•  Each key has two candidate buckets 

•  Assigned by hash1(key), hash2(key)  
•  Stored in one of its candidate buckets 

•  Lookup: read 2 buckets in parallel 

•  Insert: 
•  Perform key displacement  

recursively 
•  Still O(1) on average [Pagh04]  
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Increase Set-Associativity 

0
1
2
3
4
5
6
7

x

b 

a 

x

0
1
2
3
4
5
6
7

a c d

fe g h

b 

•  2 cacheline-sized reads per lookup 
•  50% space utilized 

•  2 cacheline-sized reads per lookup 
•  95% space utilized! 

Each bucket still fits in 1 cacheline  



Solutions 
Optimistic cuckoo hashing 

•  Better memory efficiency: 95% table occupancy 
•  Higher concurrency: single-writer/multi-reader 

CLOCK-based LRU eviction 
•  Better space efficiency and concurrency 

 
Additional algo & tuning improvements 
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focus of this talk 



False Miss Problem 
•  During insertion:  

–  always a “floating” item during insertion 
–  a reader may miss  

this floating item 
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Our Solution: 2-Step Insert 
•  Step1: Find a cuckoo path to an empty slot 

without editing buckets 
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Our Solution: 2-Step Insert 
•  Step1: Find a cuckoo path to an empty slot 

without editing buckets 

•  Step2: Move hole backwards: 
 

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 19 

0!

1!

2!

3!

4!

5!

6!

7!

a 

Insert  x 
b 



Our Solution: 2-Step Insert 
•  Step1: Find a cuckoo path to an empty slot 

without editing buckets 

•  Step2: Move hole backwards: 
 

Bin Fan @ NSDI 2013!http://www.pdl.cmu.edu/ 20 

0!

1!

2!

3!

4!

5!

6!

7!

a 

Insert  x 

b 



Our Solution: 2-Step Insert 
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Our Solution: 2-Step Insert 
•  Step1: Find a cuckoo path to an empty slot 

without editing buckets 

•  Step2: Move hole backwards: 
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Only need to ensure each move 
is atomic w.r.t. reader 



How to Ensure Atomic Move 
•  e.g., move key “b” from bucket 4 to bucket 2  

•  A simple implementation: 

•  Our approach: Optimistic locking 
•  Optimized for read-heavy workloads 
•  Each key mapped to a version counter 
•  Reader detects version change 

(described in paper)    
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How to Coordinate Writers 
 
•  Simple (current) solution: 

•  Serialize inserts 
•  Works fine with read-heavy workload 

•  Ongoing work: allow multiple writers 
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Solutions 
Optimistic cuckoo hashing 

•  Better memory efficiency: 95% table occupancy 
•  Higher concurrency: single-writer/multi-reader 

CLOCK-based LRU eviction 
•  Better space efficiency and concurrency 

 
Additional algo & tuning improvements 
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2ptr/key => 1bit/key, concurrent update 
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focus of this talk 

2ptr/key => 1bit/key, concurrent update 

Avoid unnecessary full-key comparisons on hash collision 



Problems We Solve 
•  Single-node scalability 

•  Accessing hash table and updating LRU are serialized 
•  GET requires no mutex 
•  Single-writer/multiple-reader 

 
•  Space overhead 

•  56-byte header per object  
•  3 pointers + 1 refcount  => 1 pointer + 1 refbit  
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50 remote clients generate workloads 

MemC3 

Sharding 

Memcached 

16-Byte key, 32-Byte Value, 95% GET, 5% SET, zipf distributed 

max tput 4.3 MOPS 

max tput 1.5 MOPS 

max tput 0.6 MOPS 



Conclusion 
•  Optimistic cuckoo hashing 

•  High space efficiency 
•  Optimized for read-heavy workloads 
•  Source Code available:  

 github.com/efficient/libcuckoo 

•  MemC3 improves Memcached 
•  3x throughput, 30% more (small) objects 
•  Optimistic Cuckoo Hashing, CLOCK, other system 

tuning 
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Q & A 
•  Thanks! 
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