

Building Access Oblivious Storage Cloud for Enterprise

Sarit Mukherjee (with H. Chang, M. Kodialam, T.V. Lakshman, L. Wang) Bell Labs Research, Alcatel-Lucent

Bell Labs

Motivation: Service Provider and Enterprise eco-system

VPN interconnection: Enterprises' view

Enterprise leases VPN service from a service provider to interconnect multiple sites

- Each site gets a pre-specified bandwidth guaranteed VPN connection
- All enterprise resources are accessible from any site regardless of the resources' location
 - Enterprise is able to aggregate IT resources in one or a few locations

Bell Labs

VPN interconnection: Service Providers' view

Service provider wants to provide enterprise-grade services leveraging its network

- VPN uses networking service
- Service provider intends to providing an enterprise-grade cloud solution from its network
 - Enterprise should be able to outsource IT resources and enjoy benefits of cloud service

Service Providers' Cloud in the Network

Service providers are building data centers in their network

- Large number of small data centers spread all over the network
- Provide compute, storage, content and other bandwidth and latency sensitive services
- We address service provider enabled storage services for enterprise

Service Providers' Networked Cloud

From Centralized Cloud to Distributed Cloud

Enterprises' expectation from Storage Cloud Service Service Isolation

The enterprise's virtual resources in the cloud must be isolated from the other users of the cloud

Bell Labs

Enterprises' expectation from Storage Cloud Service

Location independence

The enterprise users must be able to connect to the virtual resources in the cloud from any enterprise location

Enterprises' expectation from Storage Cloud Service

Seamlessness

An enterprise user must not see any difference between accessing an in-house resource vs. one in the cloud

Enterprises' expectation from Storage Cloud Service

Bell Labs

10 | Building Access Oblivious Storage Cloud for Enterprise | Hot-ICE 2012

exist

Distributed Storage Provisioning and File Access in Cloud

Prototype Implementation of Distributed Storage Cloud

User Name:	Alice		
Login:	alice	alice	
Password:			
Storage Requested (MB):	2000		
Access Location(s):			
🗐 G1			
🗐 G2			
G3 : Upload BW (KBps) 2000		- Download BW (KBps)	2000
🗐 G4			
🛃 G5 : Upload BW (KE	3000 (sps)	- Download BW (KBps)	5000
🗐 G6			
Enable Optimal Provisioning			

Customers connect to the cloud through the Gateways and specify the bandwidth needs

- Distributed storage cloud automation layer optimally provisions the customer
 - ✓ Determines the customer's attachment points into the Provider's network
 - ✓ Attachment points act as the Gateways into the distributed storage cloud
 - \checkmark Provisions storage for the customer at the optimal storage locations
 - ✓ Built in Linux kernel as a Unix-based file system (Ceph)
 - ✓ Exports NFS interface through the Gateway

Bell Labs

Ceph Distributed File System Architecture

Data Placement in Distributed Storage Cloud

Experimental Results

- RocketFuel's router-level ISP maps with uniform link capacity
- YouTube access traces containing 1000 distinct users and 7,465 distinct video sessions, covering 6 hours
- Simulated using GTNetS

- Bandwidth-Aware Provisioning: Determines the optimal chunking and replication per-file such that the maximum link utilization remains minimized with changing access patterns.
- Proximity-Aware Provisioning: Splits and places files as close as possible (in terms of network hops) to the edge nodes accessing them, without considering link capacity constraints.

Conclusion

- Enterprise-grade storage system tailor-made for a service provider's cloud
 - \checkmark Custom design and architecture to exploit service providers' networked cloud
 - ✓ Implementation on Linux platform with popular file system interface for users
- Benefits of the proposed architecture
 - \checkmark Storage provisioning with guaranteed performance using marginally extra bandwidth
 - New users can join easily at any location and new content can be ingested into the cloud so long as the bandwidth demands remain within the service limits
 - ✓ Significant reduction of operating costs of running a storage cloud by eliminating the need for shuffling content in the cloud to meet performance requirements with changing access patterns
 - \checkmark Easy determination of provisioning request admission into the cloud

