
Hardware Security Modules: 
The Ultimate Black Boxes

Ryan Lackey
<ryan@venona.com>

28 January 2019
USENIX Enigma 2019, Burlingame, CA

mailto:ryan@venona.com


What is a Hardware Security Module (HSM)?

Physically secure processing module designed for 
key management and processing

Server (Direct-attach and networked)

Client (mobile) and embedded

Cloud (virtualized)

Processor/platform technologies



HSMs are critical 
system components 
but also hard to 
inspect, use, and trust



HSMs are becoming 
more important and 
relevant again after a 
period of stasis



HSMs have new uses, 
with new technical, 
architectural, and 
business requirements



Important concepts in the HSM world 

Trusted Computing Base (TCB)

Bootloader security (multi-stage)

Remote attestation

Key management roles

Backup/export functionality

Certification



HSMs are critical 
system components 
but also hard to 
inspect, use, and trust



Migration to the Cloud meets an anchor



Hard to inspect a black box



Outdated, hard to use tools



Inherent tension between tamper-response and reliability



Cost and sales/licensing processes



Automatic signing/just a big smartcard problem



HSMs are becoming 
more important and 
relevant again after a 
period of stasis



History of the HSM in 60 seconds

Devices: shrinking from safes to chips

Applications: banking, infrastructure (CA, DNSSEC)

Vendors: major consolidation 

Cost: Generally has gone up

Product cycles: Longer, legacy deployments



Vendor consolidation



Horizontal scaling and CPU cryptographic performance



DevOps world and orchestration



Seems like a declining market, but no!



Cryptocurrency



Key management and authentication



More mature security models for applications



Better deployment models and tools



HSMs are key to 
solutions to many of 
the biggest problems 
in security today



Key management for 
increasingly 
high-value keys



Separation of roles 
and internal control



Someone else’s 
physically remote 
hardware with your 
critical secrets



Third-party application 
updates and trust



Limiting system impact 
of bugs and breaches



Lots of non-Internet 
applications use 
HSMs extensively 
(particularly finance)



HSMs (on client 
devices, ie mobile) are 
well on their way to 
world domination



So why haven’t HSMs taken over the world yet?



HSMs have new uses, 
with new technical, 
architectural, and 
business requirements



Conventional 
server-side HSMs still 
have painful tools, 
price points, etc.



Cloud-based HSM 
products are early 
stage (and lots of 
hybrid/legacy tech)



Custom application 
development inside 
the HSM is even more 
niche/difficult/slow



Processor/platform 
security is “free” but 
hard to develop for 
and has limitations



Certification process 
(NIST FIPS 140-2) 
delays, limitations 
(algorithms!)



The easiest path forward



Less-expensive, 
non-FIPS or 
FIPS-optional (e.g. 
Yubico YubiHSM 2)



Non-FIPS security 
platforms like USB 
Armory and continued 
embedded progress



Simplified 
development of 
on-HSM secure code 
(beyond PKCS11)



Clouds integrating 
HSMs internally 
(continuing past 
HSM-backed KMS)



Clouds offering 
optional non-FIPS 
HSMs for diverse 
algorithm needs



Permissionless, easy 
deployment using 
platform security with 
remote attestation



Hybrid HSM and 
platform security 
solutions



Successor to FIPS 
140-2 certification for 
more agile 
environments



The ideal world



Gap between conventional HSMs and platform security



Fundamentally open

Designed for inspection and trust

Range of price/performance levels

Designed for virtualization/cloud

Dream HSM of 2020s



Why this can work?

Mostly a software problem

Strong early applications and tools exist

Existing standards for backward compatibility

Viable early hardware platforms



Roadblocks?

Cloud provider adoption of hardware

Incumbent vendors at high-end 

Pricing pressure from the platform security

Limited deployment of HSM-required applications 



Questions: email <ryan@venona.com>


