/ / StreamAlert

' Serverless, Real-Time Data Analysis

& airbnb @jack_naglieri / Enigma 2017

Hypothetical: You just joined a new team,
and need to collect, analyze, and alert on log
data.

e Two colleagues on your team
e Thousands of laptops + production servers
e Must keep up with growth

Option 1: Develop and deploy your own tool

Option1 - Develop and deploy your own tool
Challenges

e Engineering time and resources
e Responsible for:

o Reliability

o Security

o Scalability

Have you had to rebuild a tool
that you previously created?

Option 2: Deploy an existing tool - open
source or commercial

Option 2 - Deploy an existing tool
Challenges

e Customizations necessary
e Scaling and upgrading are non-trivial
e Deployment challenges:

o Time

o Skillset required

o Reliance on other teams

1
/

il

%

Has cost, time, or staffing prevented you
from deploying a tool you needed?

Ideal Option

Automated deployment

Low operational overhead
Built-in scalability and reliability
Secure by default

Getting There

e ™
NS
nEiramazon Cloud Infrastructure
B¥ webservices
_ Y,
e ™
Infrastructure as code
_ Y,

10

streamalert

i

What is StreamAlert?

e Serverless, real-time data analysis
e Point-in-time alerting

e Customizable to meet your needs

12

Benefits of StreamAlert

e Scalable to TBs/day

e Automated deployment

e Minimal system ownership
e Rules written in Python

e Low cost

13

What type of data can StreamAlert analyze?

JSON
{"name":"logged in_users", "host":"ubuntu", "calendarTime":"Jan 10

17:49:07","columns":{"host":"10.0.0.2","username":"vagrant"}}

Syslog
Jan 10 17:49:07 ubuntu sshd[9644]: Accepted publickey for vagrant from

10.0.2.2 port 56738 ssh2

14

What type of data can StreamAlert analyze?

CSv
2,123456789010,eth0,10.0.0.1,10.0.0.2,56738,22,6,20,4249,ACCEPT,OK

Key Value
mMsg=audit(1364475353.159:24270): user pid=3280 uid=100 auid=500 ses=1

msg='op=PAM:authentication res=success

15

Example Logs

Environment System Network [Web] Application
4 N O & N~ N7 N
S k 15 Fa
ml Microsoft ><
Wl Azure . , 7
. il w
%' amazon ¥ : £
N NG /L DN /

streamalert

17

Make the deployment of security tools simple.

18

Design
Data Analysis
Rules

Alerts

Deployment

19

[:@ Compute
ECZ
EC2 Container Service
Lightsail ™
Elastic Beanstalk

Elastic File System
Glacier
Storage Gateway

@ Database
ROS
DynamoDB
ElastiCache
Redshift

"E.’f Metworking & Content Delivery
VPC
CloudFront
Direct Connect
Route 53

£+ Migration
DMS
Server Migration
Snowball

@g Developer Tools
CodeCommit
CodeBuild
CodeDeploy
CodeFipeline

ﬁ Management Tools
CloudWatch
CloudFormation
CloudTrail
Config
CpsWorks
Service Catalog
Trusted Advisor

? Security, Identity & Compliance
1AM
Inspector
Certificate Manager
Directory Service
WAF & Shield
Comgpliance Reports

&) Analytics
Athena
EMR
CloudSearch
Elasticsearch Service

Kinesis

Data Pipeline
QuickSignt &

&2 Artificial Inteligence
Lex

Polly

Rekognition

Machine Learning

f;‘i} Internst Of Things
AWS loT

iv: Game Development
GameLift

E Maobile Services
Mobile Hub
Cognito
Device Farm
Mobile Analytics
Pinpoint

Eﬂ Application Services
Step Functions
SWF
AP| Gateway

AppStream
Elastic Transcoder

Messaging
505
SNS
SES

ﬁ Business Productivity
WorkDocs
WorkMail

@ Deskiop & App Streaming
WorkSpaces
AppStream 2.0

e

’.

L
igEFamazon

uF webservices

Serverless - Focus on the application logic,
not the servers

2]

Serverless Compute Model

1. Write Application
2. Upload to AWS Lambda

3. Run

22

Serverless Compute Pricing Model @— > }\j

compute + # of requests = total cost

N

duration: 100ms 1,000,000 reqg/day
memory: 128MB

$5.80/month

23

Built-in Security Benefits

1. Role Based Access Control via AWS IAM
2. Natural data segmentation

3. Isolated (containerized) log analysis

4. TLS

24

Design
Data Analysis

Rules
Alerts

Deployment

25

High Level

Data AWS Kinesis Stream AWS Lambda

</

Data is sent to a Kinesis Stream; Lambda polls the stream and analyzes the data

26

AirbnbEng
Creative engineers and data scientists building a world where you can belong any
May 3 3 MmN reac

Introducing Syslog to AWS Kinesis
via Osquery

o
e

Logs awaiting collection (Logs in Yyteri by kallerna, licensed under Creative Commons)

27

osquery queries run on hosts

SELECT * FROM users;
SELECT * FROM processes;
SELECT * FROM syslog ...;
SELECT * FROM process open sockets g
.
- resulting data
O
o |
B
{
"hostIdentifier": "webO1l",
"calendarTime": "Aug 10 10:13:54"
"columns": {
"remote address": "51.32.104.190",
"remote port": "22",

-

AWS Kinesis Stream

AWS Lambda

28

Sending Data

= EyR

kinesis agent logstash fluentd osquery

{:}

code

e Configure Agent \ ‘

e Send to Stream

e Analyze with Lambda

v

AWS Kinesis Stream

.

AWS Lambda

29

Sending Data with S3

e \?* / <l

kinesis agent logstash fluentd osquery

code

Put data in S3

Analyze with Lambda

AWS Kinesis Stream

AWS Lambda

30

Records <= 1MB

Performant push model

Kinesis or S3
as a data source

e Records>1MB
e Less performant pull model

e Common datasource

31

Design
Data Analysis
Rules

Alerts

Deployment

32

Rules are expressed as Python functions!

33

Rule Layout

@rule (log sources=[], match=[], outputs=[])
def rule func(rec):

"""Description"""

return True

Rule Processing Example

"name": "logged in users",
"hostIdentifier": "hostl",
"calendarTime": "Sat Dec 10 22:45:52 2016",
"columns": {

"host": "10.0.2.2",

"user": "mike"

35

Example Rule #1

@rule(log _sources=['osquery'], match=[], outputs=['pagerduty'])
def invalid user(rec):

"""Catch unauthorized user logins"""

auth users = {'alice', 'bob'}

query = rec|['name'] # logged in users

user = rec['columns']['user'] # mike

return (
query == 'logged in users' and
user not in auth users

Example Rule #2

from netaddr import IPAddress, IPNetwork

@rule(log _sources=['osquery'], match=[], outputs=['pagerduty'])
def unauth subnet(rec):

"""Catch logins from unauthorized subnets"""
query = rec|['name']

ip = IPAddress(rec['columns']['host']) # 10.0.2.2
valid cidr = IPNetwork('10.2.0.0/24")

return (

query == 'logged in users' and
ip not in valid cidr

Let’s reduce some repeated code with a ‘matcher’

38

Matcher (@matcher ()

def logged in users(rec):
query = rec|['name']
return query == 'logged in users'

_

//’;rom netaddr import IPAddress, IPNetwork ﬁ\\\

@rule (log sources=['osquery'],
match=['logged in users’] | outputs=['pagerduty'])
def invalid subnet(rec):

"""Catch logins from unauthorized subnets"""

ip = IPAddress(rec['columns']['host'])

valid cidr = IPNetwork('10.2.0.0/24")

\\\¥ return ip not in valid cidr 4///

Matchers can also be used for determining:

e Environments
e Roles
e System Platforms

40

Design
Data Analysis

Rules

Alerts

Deployment

41

Alert Output Configuration

@rule(log sources=['osquery'],
match=[‘logged in users’], outputs=['pagerduty'])
def invalid subnet(rec):
"""Catch logins from unauthorized subnets"""
ip = IPAddress(rec|['columns']['host'])

valid cidr = IPNetwork('10.2.0.0/24")

return ip not in valid cidr

S3 (datasource)

T~

StreamAlert
Processing
Lamba

Amazon SNS

AWS Kinesis Stream
(datasource)

StreamAlert
Output
Lamba

43

INCIDENTS 2 INCIDENT DETAILS

#38232: StreamAlert Rule Triggered - demo_invalid_login « Edit

rule_name demo_invalid_login
payload
service kinesis
record
unixTime 1478824834
name last
hostIdentifier demo. host.net
columns
username
type
ity
time
pid
host

joebob
Fi

pts/8

12345678

135

18.8.8.2

VA

)

¥ slack

StreamAlert =c7 222 P

Streamdlert Rule Triggered
Rule # of Alerts
demo_invalid_login 2
Service Entity
kinesis demo_kinsis_stream
Today at 2:42 FM
{

“action": "added”,
“calendarTime™: “Jan 18 2817°,
“columns": {
“"host": "10.8.8.27,
"pid": "139",
“time”: "123456787,
"tty": “ptssaT,
“type": 7",
"username”: "joebob™
h
“decorations™: {
"“envIdentifier®: “demo”,
“roleldentifier”: “demo”
iz
"hostIdentifier”: "demo.host.net”,
"name": "last",
"umxTime”: "1478824834"

45

Design
Data Analysis

Rules and Alerts

Deployment

46

Goal: Make Deployment Simple

47

Assembly Line

e Time/Cost Savings
e Accessible
e Interchangeable

e Repeatable

49

Building with
Terraform

Express complex infrastructure as code
Interchangeable
Consistent

Abstracted with stream_alert_cli

50

web : github.com/airbnb/streamalert

twitter: @streamalert io

5]

Thank You!

e @enigmaconf, @usenix

e @awscloud team (services and support)

® @mimeframe (concept, website, guides, review)
e (@strcrzy (core rules logic)
e (@2zZWwWass (osquery kinesis output plugins)

e @hackgnar (osquery kinesis bug fixes)

52

&

airbnb

