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Serverless, Real-Time Data Analysis
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Hypothetical: You just joined a new team, 
and need to collect, analyze, and alert on log 

data.
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● Two colleagues on your team
● Thousands of laptops + production servers
● Must keep up with growth



Option 1: Develop and deploy your own tool
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Challenges
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● Engineering time and resources
● Responsible for:

○ Reliability
○ Security
○ Scalability

Option 1 - Develop and deploy your own tool



Have you had to rebuild a tool
that you previously created?
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Option 2: Deploy an existing tool - open 
source or commercial

6



● Customizations necessary

● Scaling and upgrading are non-trivial

● Deployment challenges:

○ Time

○ Skillset required

○ Reliance on other teams
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Challenges
Option 2 - Deploy an existing tool



Has cost, time, or staffing prevented you 
from deploying a tool you needed?
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Ideal Option

● Automated deployment

● Low operational overhead

● Built-in scalability and reliability

● Secure by default



Infrastructure as code

Cloud Infrastructure
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Getting There



streamalert
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What is StreamAlert?
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● Serverless, real-time data analysis

● Point-in-time alerting

● Customizable to meet your needs



● Scalable to TBs/day

● Automated deployment

● Minimal system ownership 

● Rules written in Python

● Low cost

Benefits of StreamAlert
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What type of data can StreamAlert analyze?
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JSON

{"name":"logged_in_users", "host":"ubuntu", "calendarTime":"Jan 10 

17:49:07","columns":{"host":"10.0.0.2","username":"vagrant"}}

Syslog

Jan 10 17:49:07 ubuntu sshd[9644]: Accepted publickey for vagrant from 

10.0.2.2 port 56738 ssh2
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CSV

2,123456789010,eth0,10.0.0.1,10.0.0.2,56738,22,6,20,4249,ACCEPT,OK

Key Value

msg=audit(1364475353.159:24270): user pid=3280 uid=100 auid=500 ses=1 

msg='op=PAM:authentication res=success

What type of data can StreamAlert analyze?



Example Logs
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Environment System Network [Web] Application



streamalert
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Make the deployment of security tools simple.
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Design
Data Analysis

Rules

Alerts

Deployment
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Serverless - Focus on the application logic,
not the servers
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Serverless Compute Model

1. Write Application

2. Upload to AWS Lambda

3. Run
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Serverless Compute Pricing Model

compute + # of requests = total cost
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duration: 100ms

memory: 128MB

1,000,000 req/day

$5.80/month



Built-in Security Benefits

1. Role Based Access Control via AWS IAM

2. Natural data segmentation

3. Isolated (containerized) log analysis

4. TLS
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Design

Data Analysis
Rules

Alerts

Deployment
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High Level
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Data is sent to a Kinesis Stream; Lambda polls the stream and analyzes the data

AWS Kinesis Stream AWS LambdaData
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SELECT * FROM users;
SELECT * FROM processes;
SELECT * FROM syslog ...;
SELECT * FROM process_open_sockets ...;

{
  "hostIdentifier": "web01",
  "calendarTime": "Aug 10 10:13:54”
  "columns": {
    "remote_address": "51.32.104.190",
    "remote_port": "22",
    ...
}
...

AWS Kinesis Stream
AWS Lambda

osquery queries run on hosts

resulting data



Sending Data

● Configure Agent

● Send to Stream

● Analyze with Lambda
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osquerykinesis agent logstash fluentd code

...

AWS LambdaAWS Kinesis Stream



Sending Data with S3

● Put data in S3

● Analyze with Lambda
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osquerykinesis agent logstash fluentd code

...

AWS LambdaAWS Kinesis Stream



Kinesis or S3
as a data source

● Records <= 1MB

● Performant push model
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● Records > 1MB

● Less performant pull model

● Common datasource



Design

Data Analysis

Rules
Alerts

Deployment
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Rules are expressed as Python functions!
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Rule Layout

@rule(log_sources=[], match=[], outputs=[])
def rule_func(rec):
    """Description"""
    return True
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Rule Processing Example

{
  "name": "logged_in_users",
  "hostIdentifier": "host1",
  "calendarTime": "Sat Dec 10 22:45:52 2016",
  "columns": {
    "host": "10.0.2.2",
    "user": "mike"
  }
}
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Example Rule #1

@rule(log_sources=['osquery'], match=[], outputs=['pagerduty'])
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def invalid_user(rec):
    """Catch unauthorized user logins"""
    auth_users = {'alice', 'bob'}
    query = rec['name']           # logged_in_users
    user = rec['columns']['user'] # mike

    return (
        query == 'logged_in_users' and
        user not in auth_users
    )



Example Rule #2

@rule(log_sources=['osquery'], match=[], outputs=['pagerduty'])
def unauth_subnet(rec):
    """Catch logins from unauthorized subnets"""

query = rec['name']
    ip = IPAddress(rec['columns']['host']) # 10.0.2.2

valid_cidr = IPNetwork('10.2.0.0/24')
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from netaddr import IPAddress, IPNetwork

    return (
        query == 'logged_in_users' and
        ip not in valid_cidr
    )



Let’s reduce some repeated code with a ‘matcher’

38



Matcher

from netaddr import IPAddress, IPNetwork

@rule(log_sources=['osquery'], 
match=[‘logged_in_users’], outputs=['pagerduty'])
def invalid_subnet(rec):
    """Catch logins from unauthorized subnets"""
    ip = IPAddress(rec['columns']['host'])

valid_cidr = IPNetwork('10.2.0.0/24')

    return ip not in valid_cidr

@matcher()
def logged_in_users(rec):
   query = rec['name']
   return query == 'logged_in_users'
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Matchers can also be used for determining:

● Environments
● Roles
● System Platforms
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Rules

Alerts
Deployment
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Alert Output Configuration

@rule(log_sources=['osquery'], 
match=[‘logged_in_users’], outputs=['pagerduty'])
def invalid_subnet(rec):
    """Catch logins from unauthorized subnets"""
    ip = IPAddress(rec['columns']['host'])

valid_cidr = IPNetwork('10.2.0.0/24')

    return ip not in valid_cidr
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Any API

StreamAlert
 Output
Lamba

Amazon SNS

AWS Kinesis Stream
(datasource)

StreamAlert
Processing
Lamba

S3 (datasource)
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Design

Data Analysis

Rules and Alerts

Deployment
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Goal: Make Deployment Simple
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Assembly Line

● Time/Cost Savings

● Accessible

● Interchangeable

● Repeatable
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Building with 
Terraform

● Express complex infrastructure as code

● Interchangeable

● Consistent

● Abstracted with stream_alert_cli
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web : github.com/airbnb/streamalert

twitter:  @streamalert_io
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Thank You!

● @enigmaconf, @usenix
● @awscloud team (services and support)

● @mimeframe (concept, website, guides, review)

● @strcrzy (core rules logic)

● @zwass (osquery kinesis output plugins)

● @hackgnar (osquery kinesis bug fixes)
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