
StreamAlert

@jack_naglieri / Enigma 2017

Serverless, Real-Time Data Analysis

1

Hypothetical: You just joined a new team,
and need to collect, analyze, and alert on log

data.

2

● Two colleagues on your team
● Thousands of laptops + production servers
● Must keep up with growth

Option 1: Develop and deploy your own tool

3

Challenges

4

● Engineering time and resources
● Responsible for:

○ Reliability
○ Security
○ Scalability

Option 1 - Develop and deploy your own tool

Have you had to rebuild a tool
that you previously created?

5

Option 2: Deploy an existing tool - open
source or commercial

6

● Customizations necessary

● Scaling and upgrading are non-trivial

● Deployment challenges:

○ Time

○ Skillset required

○ Reliance on other teams

7

Challenges
Option 2 - Deploy an existing tool

Has cost, time, or staffing prevented you
from deploying a tool you needed?

8

9

Ideal Option

● Automated deployment

● Low operational overhead

● Built-in scalability and reliability

● Secure by default

Infrastructure as code

Cloud Infrastructure

10

Getting There

streamalert

11

What is StreamAlert?

12

● Serverless, real-time data analysis

● Point-in-time alerting

● Customizable to meet your needs

● Scalable to TBs/day

● Automated deployment

● Minimal system ownership

● Rules written in Python

● Low cost

Benefits of StreamAlert

13

What type of data can StreamAlert analyze?

14

JSON

{"name":"logged_in_users", "host":"ubuntu", "calendarTime":"Jan 10

17:49:07","columns":{"host":"10.0.0.2","username":"vagrant"}}

Syslog

Jan 10 17:49:07 ubuntu sshd[9644]: Accepted publickey for vagrant from

10.0.2.2 port 56738 ssh2

15

CSV

2,123456789010,eth0,10.0.0.1,10.0.0.2,56738,22,6,20,4249,ACCEPT,OK

Key Value

msg=audit(1364475353.159:24270): user pid=3280 uid=100 auid=500 ses=1

msg='op=PAM:authentication res=success

What type of data can StreamAlert analyze?

Example Logs

16

Environment System Network [Web] Application

streamalert

17

Make the deployment of security tools simple.

18

Design
Data Analysis

Rules

Alerts

Deployment

19

20

Serverless - Focus on the application logic,
not the servers

21

Serverless Compute Model

1. Write Application

2. Upload to AWS Lambda

3. Run

22

Serverless Compute Pricing Model

compute + # of requests = total cost

23

duration: 100ms

memory: 128MB

1,000,000 req/day

$5.80/month

Built-in Security Benefits

1. Role Based Access Control via AWS IAM

2. Natural data segmentation

3. Isolated (containerized) log analysis

4. TLS

24

Design

Data Analysis
Rules

Alerts

Deployment

25

High Level

26

Data is sent to a Kinesis Stream; Lambda polls the stream and analyzes the data

AWS Kinesis Stream AWS LambdaData

27

28

SELECT * FROM users;
SELECT * FROM processes;
SELECT * FROM syslog ...;
SELECT * FROM process_open_sockets ...;

{
 "hostIdentifier": "web01",
 "calendarTime": "Aug 10 10:13:54”
 "columns": {
 "remote_address": "51.32.104.190",
 "remote_port": "22",
 ...
}
...

AWS Kinesis Stream
AWS Lambda

osquery queries run on hosts

resulting data

Sending Data

● Configure Agent

● Send to Stream

● Analyze with Lambda

29

osquerykinesis agent logstash fluentd code

...

AWS LambdaAWS Kinesis Stream

Sending Data with S3

● Put data in S3

● Analyze with Lambda

30

osquerykinesis agent logstash fluentd code

...

AWS LambdaAWS Kinesis Stream

Kinesis or S3
as a data source

● Records <= 1MB

● Performant push model

31

● Records > 1MB

● Less performant pull model

● Common datasource

Design

Data Analysis

Rules
Alerts

Deployment

32

Rules are expressed as Python functions!

33

Rule Layout

@rule(log_sources=[], match=[], outputs=[])
def rule_func(rec):
 """Description"""
 return True

34

Rule Processing Example

{
 "name": "logged_in_users",
 "hostIdentifier": "host1",
 "calendarTime": "Sat Dec 10 22:45:52 2016",
 "columns": {
 "host": "10.0.2.2",
 "user": "mike"
 }
}

35

Example Rule #1

@rule(log_sources=['osquery'], match=[], outputs=['pagerduty'])

36

def invalid_user(rec):
 """Catch unauthorized user logins"""
 auth_users = {'alice', 'bob'}
 query = rec['name'] # logged_in_users
 user = rec['columns']['user'] # mike

 return (
 query == 'logged_in_users' and
 user not in auth_users
)

Example Rule #2

@rule(log_sources=['osquery'], match=[], outputs=['pagerduty'])
def unauth_subnet(rec):
 """Catch logins from unauthorized subnets"""

query = rec['name']
 ip = IPAddress(rec['columns']['host']) # 10.0.2.2

valid_cidr = IPNetwork('10.2.0.0/24')

37

from netaddr import IPAddress, IPNetwork

 return (
 query == 'logged_in_users' and
 ip not in valid_cidr
)

Let’s reduce some repeated code with a ‘matcher’

38

Matcher

from netaddr import IPAddress, IPNetwork

@rule(log_sources=['osquery'],
match=[‘logged_in_users’], outputs=['pagerduty'])
def invalid_subnet(rec):
 """Catch logins from unauthorized subnets"""
 ip = IPAddress(rec['columns']['host'])

valid_cidr = IPNetwork('10.2.0.0/24')

 return ip not in valid_cidr

@matcher()
def logged_in_users(rec):
 query = rec['name']
 return query == 'logged_in_users'

39

Matchers can also be used for determining:

● Environments
● Roles
● System Platforms

40

Design

Data Analysis

Rules

Alerts
Deployment

41

Alert Output Configuration

@rule(log_sources=['osquery'],
match=[‘logged_in_users’], outputs=['pagerduty'])
def invalid_subnet(rec):
 """Catch logins from unauthorized subnets"""
 ip = IPAddress(rec['columns']['host'])

valid_cidr = IPNetwork('10.2.0.0/24')

 return ip not in valid_cidr

42

43

Any API

StreamAlert
 Output
Lamba

Amazon SNS

AWS Kinesis Stream
(datasource)

StreamAlert
Processing
Lamba

S3 (datasource)

44

45

Design

Data Analysis

Rules and Alerts

Deployment

46

Goal: Make Deployment Simple

47

48

Assembly Line

● Time/Cost Savings

● Accessible

● Interchangeable

● Repeatable

49

Building with
Terraform

● Express complex infrastructure as code

● Interchangeable

● Consistent

● Abstracted with stream_alert_cli

50

web : github.com/airbnb/streamalert

twitter: @streamalert_io

51

Thank You!

● @enigmaconf, @usenix
● @awscloud team (services and support)

● @mimeframe (concept, website, guides, review)

● @strcrzy (core rules logic)

● @zwass (osquery kinesis output plugins)

● @hackgnar (osquery kinesis bug fixes)

52

53

