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Hypothetical: You just joined a new team,
and need to collect, analyze, and alert on log
data.

e Two colleagues on your team
e Thousands of laptops + production servers
e Must keep up with growth



Option 1: Develop and deploy your own tool




Option1 - Develop and deploy your own tool
Challenges

e Engineering time and resources
e Responsible for:

o Reliability

o Security

o Scalability



Have you had to rebuild a tool
that you previously created?



Option 2: Deploy an existing tool - open
source or commercial




Option 2 - Deploy an existing tool
Challenges

e Customizations necessary
e Scaling and upgrading are non-trivial
e Deployment challenges:

o Time

o Skillset required

o Reliance on other teams
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Has cost, time, or staffing prevented you
from deploying a tool you needed?



Ideal Option

Automated deployment

Low operational overhead
Built-in scalability and reliability
Secure by default



Getting There
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nEiramazon Cloud Infrastructure
B¥ webservices
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Infrastructure as code
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What is StreamAlert?

e Serverless, real-time data analysis
e Point-in-time alerting

e Customizable to meet your needs
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Benefits of StreamAlert

e Scalable to TBs/day

e Automated deployment

e Minimal system ownership
e Rules written in Python

e Low cost
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What type of data can StreamAlert analyze?

JSON
{"name":"logged in_users", "host":"ubuntu", "calendarTime":"Jan 10

17:49:07","columns":{"host":"10.0.0.2","username":"vagrant"}}

Syslog
Jan 10 17:49:07 ubuntu sshd[9644]: Accepted publickey for vagrant from

10.0.2.2 port 56738 ssh2
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What type of data can StreamAlert analyze?

CSv
2,123456789010,eth0,10.0.0.1,10.0.0.2,56738,22,6,20,4249,ACCEPT,OK

Key Value
mMsg=audit(1364475353.159:24270): user pid=3280 uid=100 auid=500 ses=1

msg='op=PAM:authentication res=success
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Example Logs
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streamalert
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Make the deployment of security tools simple.
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Design
Data Analysis
Rules

Alerts

Deployment
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[:@ Compute
ECZ
EC2 Container Service
Lightsail ™
Elastic Beanstalk

Elastic File System
Glacier
Storage Gateway

@ Database
ROS
DynamoDB
ElastiCache
Redshift

"E.’f Metworking & Content Delivery
VPC
CloudFront
Direct Connect
Route 53

£+ Migration
DMS
Server Migration
Snowball

@g Developer Tools
CodeCommit
CodeBuild
CodeDeploy
CodeFipeline

ﬁ Management Tools
CloudWatch
CloudFormation
CloudTrail
Config
CpsWorks
Service Catalog
Trusted Advisor

? Security, Identity & Compliance
1AM
Inspector
Certificate Manager
Directory Service
WAF & Shield
Comgpliance Reports

&) Analytics
Athena
EMR
CloudSearch
Elasticsearch Service

Kinesis

Data Pipeline
QuickSignt &

&2 Artificial Inteligence
Lex

Polly

Rekognition

Machine Learning

f;‘i} Internst Of Things
AWS loT

iv: Game Development
GameLift

E Maobile Services
Mobile Hub
Cognito
Device Farm
Mobile Analytics
Pinpoint

Eﬂ Application Services
Step Functions
SWF
AP| Gateway

AppStream
Elastic Transcoder

Messaging
505
SNS
SES

ﬁ Business Productivity
WorkDocs
WorkMail

@ Deskiop & App Streaming
WorkSpaces
AppStream 2.0
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Serverless - Focus on the application logic,
not the servers
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Serverless Compute Model

1.  Write Application
2. Upload to AWS Lambda

3. Run
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Serverless Compute Pricing Model @— > }\j

compute + # of requests = total cost

N

duration: 100ms 1,000,000 reqg/day
memory: 128MB

$5.80/month
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Built-in Security Benefits

1. Role Based Access Control via AWS IAM
2. Natural data segmentation

3. Isolated (containerized) log analysis

4. TLS
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Design
Data Analysis

Rules
Alerts

Deployment
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High Level

Data AWS Kinesis Stream AWS Lambda

</

Data is sent to a Kinesis Stream; Lambda polls the stream and analyzes the data
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AirbnbEng
Creative engineers and data scientists building a world where you can belong any
May 3 3 MmN reac

Introducing Syslog to AWS Kinesis
via Osquery

o
e

Logs awaiting collection (Logs in Yyteri by kallerna, licensed under Creative Commons)
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osquery queries run on hosts

SELECT * FROM users;
SELECT * FROM processes;
SELECT * FROM syslog ...;
SELECT * FROM process open sockets g
.
- resulting data
O
o |
B
{
"hostIdentifier": "webO1l",
"calendarTime": "Aug 10 10:13:54"
"columns": {
"remote address": "51.32.104.190",
"remote port": "22",

-

AWS Kinesis Stream

AWS Lambda
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Sending Data

= EyR

kinesis agent logstash fluentd osquery

{:}

code

e Configure Agent \ ‘

e Send to Stream

e Analyze with Lambda

v

AWS Kinesis Stream

.

AWS Lambda
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Sending Data with S3

e \?* / <l

kinesis agent logstash fluentd osquery

code

Put data in S3

Analyze with Lambda

AWS Kinesis Stream

AWS Lambda
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Records <= 1MB

Performant push model

Kinesis or S3
as a data source

e Records>1MB
e Less performant pull model

e Common datasource

31



Design
Data Analysis
Rules

Alerts

Deployment
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Rules are expressed as Python functions!
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Rule Layout

@rule (log sources=[], match=[], outputs=[])
def rule func(rec):

"""Description"""

return True



Rule Processing Example

"name": "logged in users",
"hostIdentifier": "hostl",
"calendarTime": "Sat Dec 10 22:45:52 2016",
"columns": {

"host": "10.0.2.2",

"user": "mike"
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Example Rule #1

@rule(log _sources=['osquery'], match=[], outputs=['pagerduty'])
def invalid user(rec):

"""Catch unauthorized user logins"""

auth users = {'alice', 'bob'}

query = rec|[ 'name'] # logged in users

user = rec['columns']['user'] # mike

return (
query == 'logged in users' and
user not in auth users



Example Rule #2

from netaddr import IPAddress, IPNetwork

@rule(log _sources=['osquery'], match=[], outputs=['pagerduty'])
def unauth subnet(rec):

"""Catch logins from unauthorized subnets"""
query = rec|[ 'name']

ip = IPAddress(rec['columns']['host']) # 10.0.2.2
valid cidr = IPNetwork('10.2.0.0/24")

return (

query == 'logged in users' and
ip not in valid cidr



Let’s reduce some repeated code with a ‘matcher’
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Matcher (@matcher ()

def logged in users(rec):
query = rec|['name']
return query == 'logged in users'

\_

//’;rom netaddr import IPAddress, IPNetwork ﬁ\\\

@rule (log sources=['osquery'],
match=['logged in users’] | outputs=['pagerduty'])
def invalid subnet(rec):

"""Catch logins from unauthorized subnets"""

ip = IPAddress(rec['columns']['host'])

valid cidr = IPNetwork('10.2.0.0/24")

\\\¥ return ip not in valid cidr 4///




Matchers can also be used for determining:

e Environments
e Roles
e System Platforms
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Alert Output Configuration

@rule(log sources=['osquery'],
match=[‘logged in users’], outputs=['pagerduty'])
def invalid subnet(rec):
"""Catch logins from unauthorized subnets"""
ip = IPAddress(rec|['columns']['host'])

valid cidr = IPNetwork('10.2.0.0/24")

return ip not in valid cidr



S3 (datasource)

T~

StreamAlert
Processing
Lamba

Amazon SNS

AWS Kinesis Stream
(datasource)

StreamAlert
Output
Lamba

43



INCIDENTS 2 INCIDENT DETAILS

#38232: StreamAlert Rule Triggered - demo_invalid_login « Edit

rule_name demo_invalid_login
payload
service kinesis
record
unixTime 1478824834
name last
hostIdentifier demo. host.net
columns
username
type
ity
time
pid
host

joebob
Fi

pts/8

12345678
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18.8.8.2
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)

¥ slack

StreamAlert =c7 222 P

Streamdlert Rule Triggered
Rule # of Alerts
demo_invalid_login 2
Service Entity
kinesis demo_kinsis_stream
Today at 2:42 FM
{

“action": "added”,
“calendarTime™: “Jan 18 2817°,
“columns": {
“"host": "10.8.8.27,
"pid": "139",
“time”: "123456787,
"tty": “ptssaT,
“type": 7",
"username”: "joebob™
h
“decorations™: {
"“envIdentifier®: “demo”,
“roleldentifier”: “demo”
iz
"hostIdentifier”: "demo.host.net”,
"name": "last",
"umxTime”: "1478824834"
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Design
Data Analysis

Rules and Alerts

Deployment
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Goal: Make Deployment Simple
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Assembly Line

e Time/Cost Savings
e Accessible
e Interchangeable

e Repeatable
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Building with
Terraform

Express complex infrastructure as code
Interchangeable
Consistent

Abstracted with stream_alert_cli
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web : github.com/airbnb/streamalert

twitter: @streamalert io
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Thank You!

e @enigmaconf, @usenix

e @awscloud team (services and support)

® @mimeframe (concept, website, guides, review)
e (@strcrzy (core rules logic)
e (@2zZWwWass (osquery kinesis output plugins)

e @hackgnar (osquery kinesis bug fixes)
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