

FeatureSmith

Learning to Detect Malware by Mining the Security Literature

Security and Machine Learning

Features in Machine Learning Models

• How should we compare samples?

Running Example: Android Malware Detection

- How should we compare samples?
 - Permissions
 - Protect sensitive data and functionality
 - Does not work for privilege escalation
 - API method calls
 - Reveal malware behaviors
- Feature engineering
 - Use domain knowledge to identify useful features
 - Must consider threat semantics

The Security Body of Knowledge

• Growing volume of papers, industry reports, blogs, ...

Go	ogle intru	usion detection	*	٩	
Schola	ar About	678,000 results 0.06 sec)			
Art	Google	malware		•	۹
Са	Scholar	About 108,000 results (0.04 sec)			
	* -talaa	Dissecting android malware: Characterizett			

Difficult to assimilate all relevant knowledge

Dilemma

Can we engineer features automatically, by mining security papers?

Can we create an artificial intelligence that helps us build other intelligent systems?

Security Threats in Natural Language

"The Zsone malware is designed or to send SMS messages to certain premium numbers"*

^{*} Zhou et al. 'Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets,' NDSS 2012.

Security Threats in Natural Language

 "GingerMaster [...] is often bundled with benign applications and tries to gain root access" *

* Arp et al. 'Drebin: Effective and Explainable Detection of Android Malware in Your Pocket,' NDSS 2014.

Plato's Allegory of the Cave

Illustration by John D'Alembert

Domain Knowledge

Challenge #1

Understanding the semantic meaning

 Based on common sense, knowledge of security domain

Challenge #2

Attacker behaviors keep evolving - Security arms race - Must discover open-ended behaviors

Year

Intuition for Automatic Feature Engineering

Behavior Extraction

- Behavior
 - Description of malware activity
 - Short phrase
 - <subject?, verb, object?>
 - Parse grammatical structure of sentences

premium numbers"*

- Zsone malware send SMS messages
- designed Zsone malware
- Zsone malware send to certain premium numbers

Behavior Understanding

• Link behaviors to concrete features

"API calls for accessing sensitive data, such as getDeviceId()"*

Behavior Understanding

• Link behaviors to malware

Zsone malware is designed to send SMS messages to premium numbers

Semantic Network

- Nodes: security concepts
 - Malware families: named entities
 - Concrete features: named entities
 - Behaviors: open ended
- Edges: semantically related concepts
 - Weights based on distance and co-occurrence

Semantic Network Example

How Well Does This Work?

Automatic feature engineering

- FeatureSmith
 - Analyzed 1,068 security papers
 - Automatically engineered
 195 features relevant to
 Android malware
 - Out of 383 found in the papers

Manual feature engineering

• Drebin*

- State-of-the-art Android malware detector
- Uses 545,334 features
 - Including 315 suspicious API calls, manually curated

Auto vs. Manual: Experiment

Automatic

 Features engineered by FeatureSmith

Manual

• Features used in Drebin

- Same classification algorithm
- Same corpus of benign and malicious apps
- Same feature types
- Experiment: Compare the two feature sets

Auto vs. Manual: Features

- FeatureSmith discovered new features
 - getSimOperatorName
 - getNetworkOperatorName
 - getCountry

Missing from manually engineered set

- Often used by malware
 - Help detect Gappusin family

(not detected by Drebin)

Human data scientists cannot assimilate all relevant knowledge

Auto vs. Manual: Detection Performance

Auto vs. Manual: Detection Performance

Auto vs. Manual: Detection Performance

Knowledge Evolution

Effectiveness of features discovered in different years

Alternatives

- Feature selection
 - Must enumerate all possible features in advance (e.g. all Android permissions)
- Representation learning
 - Discovers useful features (representations) from raw data (e.g. using a neural network)
- Disadvantages
 - Data-driven: may reflect biases in the ground truth
 - No automatic discovery of threat semantics

In A Nutshell

- Automatic feature engineering
 - Discover semantically meaningful features
 - Some missing from manually curated set
 - Performance on par with state-of-the-art malware detector
 - Many potential applications
 - Security: AI bots, threat intelligence, intrusion detection, ...
 - Other fields: biomedical research, IBM's Watson Q&A system
- Complements human-driven feature engineering
 - Human data scientists have intuition
 - FeatureSmith can reason over entire body of knowledge
- Paper and data: <u>http://featuresmith.org</u>

Automated systems can understand the semantics of security concepts

This is a powerful tool for creating attacks and defenses

Thank you!

Tudor Dumitraș

🔁 @tudor_dumitras

http://featuresmith.org

Acknowledgments:

- Work with Ziyun Zhu
- Robot cartoons by Katy Tresedder

