
QoS-Aware Admission Control in

Heterogeneous Datacenters

Christina Delimitrou, Nick Bambos

and Christos Kozyrakis

Stanford University

ICAC – June 28th 2013

2

Cloud DC Scheduling

 Workloads are unknown  random apps submitted for short periods

 Significant churn (app arrivals/departures)  not large long-running apps

 High variability in workloads (runtime, number of threads, etc.)

 Fast admission & scheduling decisions

DC

Scheduler

Workloads
S

S

S

S
System State Metrics

3

Users are Interested in

Fast Execution Time

Low Waiting Time

The amount of time the

job needs to run

The amount of time the

job is waiting before

it gets scheduled

4

Executive Summary

 Problem: Admission control in large-scale cloud DCs (e.g., EC2, Azure)

 Heterogeneity  performance/efficiency

 Interference  performance loss from high interference

 High arrival rates  system can become oversubscribed

 Background: Paragon is a heterogeneity and interference-aware scheduler for
cloud DCs.

 Limitations: In high-load scenarios demanding workloads can block easy-to-
satisfy applications  head-of-line blocking  long waiting time

 ARQ is an admission control protocol for cloud DCs that is:

 Application-aware: Accounts for the resource quality of each app

 QoS-aware: Queues applications s.t. their QoS guarantees are preserved

 Scalable: Scales to 10,000s of applications and servers

 Lightweight: Low and upper-bound queueing overheads

5

Users are Interested in

Fast Execution Time

Low Waiting Time

The amount of time the

job needs to run

The amount of time the

job is waiting before

it gets scheduled

P
a
ra

g
o
n

A

R
Q

6

Background: Paragon

 Classification: ~Netflix Challenge

 Small information signal about new application

 Leverage system knowledge about previously scheduled applications

 Collaborative filtering techniques (SVD + PQ reconstruction with SGD)

  Scheduling recommendations: Heterogeneity + Interference

 Greedy Scheduler:

 Co-schedule workloads with no/small interference on suitable hardware platforms

 preserve QoS & improve utilization

Server Platform Caused (c) Tolerated (t)

Scheduler
Apps

System State

Heterogeneity

Interference

Learning

Metrics

App

Classification

7

Limitations

 Scheduling in FIFO order:

 Applications with small resource requirements get blocked behind demanding

workloads  head-of-line-blocking  long queueing delays

 Short jobs get blocked behind long jobs

 High-priority jobs get blocked behind low-priority jobs

 Resource-agnostic queueing of applications:

 Application in the head of the queue gets dispatched to first available server 

not necessarily a suitable server for that workload

8

ARQ: Application-aware Admission Control

 Resource Quality: Degree of tolerated and caused interference in various shared

resources (higher quality means more demanding application)

 Resource quality-aware queueing: Applications are queued based on the resource

quality they need

 Multi-class admission control: Each class corresponds to apps with specific range of

Qi  dispatched to servers with the required Qj

 Preserving QoS: Applications can be diverged to different queues to preserve their

QoS (when waiting time is high)

For application i: For server j:

9

ARQ Design

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3
Higher quality

 resources

10

ARQ Design

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Qi

Q1

Q2

Q10

Q3

11

ARQ Design

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3

12

ARQ Design

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3

13

ARQ Design

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3

14

ARQ: Queue Switching -- Utilization

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3

If no applications in higher

queue diverge up  suboptimal

utilization but maintains QoS

15

ARQ: Queue Switching -- QoS

…

Q1: [90,100]

Q2: [80,90]

Q3: [70,80]

Q10: [0,10]

Q1

Q2

Q10

Q3

If server available diverge to

lower queue  some QoS

degradation

16

Switching between Queues

 Statistically analyze per-pool freed-server-time  distribution fitting

(represent using known distributions)

 Updated every time a new server is freed

 From CDFs of per-pool freed-server-time compute the optimal switching

point between queues

17

Switching between Queues

 Optimization function:

 Find switching time t s.t.:

maximize Prob[server is freed],

subj. total waiting time preserves QoS

 Solving the optimization problem is fast (~msec) and scalable

(O(n)) even for large numbers of applications and servers

18

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads

 I/O-bound: Hadoop + data mining (Matlab)

 Small scale:

 40 servers, 10 server configurations (Xeons, Atoms, etc.)

 178 applications used in four workload scenarios:

 Low load, high load and oversubscribed

 Large scale: 1,000 EC2 servers, oversubscribed scenario (8,500 apps)

19

Evaluation: Small Scale

 Paragon + ARQ preserves QoS for 95% of workloads  94% without ARQ

 Average performance is 99.6% of optimal

20

Evaluation: Small Scale

 Paragon + ARQ preserves QoS for 82% of workloads  64% without ARQ

 Average performance is 98% of optimal

21

Evaluation: Large Scale (EC2)

 Paragon preserves QoS for 75% of workloads  61% without ARQ

 Bounds degradation to less than 10% for 99% of workloads

22

Other experiments

 Workload scenario with application phases (app requirements change)

 Shortest Job First (SJF) and priorities

 Queueing overheads

 Sensitivity to parameters (e.g., number of queues, etc.)

 Distributions of server freed times

23

Conclusions

 ARQ leverages Paragon to classify applications in multiple

queues such that QoS guarantees are preserved and

utilization is maximized

 It improves performance both for low and especially for

oversubscribed workload scenarios

 It is scalable and lightweight

24

Thank you

Questions??

