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Cloud DC Scheduling 

 

 

 

 

 

 

 

 

 

 Workloads are unknown  random apps submitted for short periods 

 Significant churn (app arrivals/departures)  not large long-running apps  

 High variability in workloads (runtime, number of threads, etc. ) 

 Fast admission & scheduling decisions 
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Executive Summary 

 Problem: Admission control in large-scale cloud DCs (e.g., EC2, Azure) 

 Heterogeneity  performance/efficiency  

 Interference  performance loss from high interference 

 High arrival rates  system can become oversubscribed  
 

 

 Background: Paragon is a heterogeneity and interference-aware scheduler for 
cloud DCs.  

 

 Limitations: In high-load scenarios demanding workloads can block easy-to-
satisfy applications  head-of-line blocking  long waiting time 
 

 ARQ is an admission control protocol for cloud DCs that is:  

 Application-aware: Accounts for the resource quality of each app 

 QoS-aware: Queues applications s.t. their QoS guarantees are preserved 

 Scalable: Scales to 10,000s of applications and servers 

 Lightweight: Low and upper-bound queueing overheads 
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Background: Paragon 

 Classification: ~Netflix Challenge 

 Small information signal about new application 

 Leverage system knowledge about previously scheduled applications 

 Collaborative filtering techniques (SVD + PQ reconstruction with SGD) 

  Scheduling recommendations:    Heterogeneity  +   Interference  

 
 

 Greedy Scheduler:  

 Co-schedule workloads with no/small interference on suitable hardware platforms 

 preserve QoS & improve utilization 

 

 

 

Server Platform Caused (c) Tolerated (t) 

Scheduler 
Apps 

System State 

Heterogeneity 

Interference 

Learning 

Metrics 

App 

Classification 



7 

Limitations 

 Scheduling in FIFO order:  

 Applications with small resource requirements get blocked behind demanding 

workloads  head-of-line-blocking  long queueing delays 

 Short jobs get blocked behind long jobs 

 High-priority jobs get blocked behind low-priority jobs 

 

 

 Resource-agnostic queueing of applications:  

 Application in the head of the queue gets dispatched to first available server  

not necessarily a suitable server for that workload 
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ARQ: Application-aware Admission Control 

 Resource Quality: Degree of tolerated and caused interference in various shared 

resources (higher quality means more demanding application) 

 

 

 

 Resource quality-aware queueing: Applications are queued based on the resource 

quality they need 

 

 Multi-class admission control: Each class corresponds to apps with specific range of 

Qi  dispatched to servers with the required Qj 

 

 Preserving QoS: Applications can be diverged to different queues to preserve their 

QoS (when waiting time is high) 

 

 

 

For application i: For server j: 



9 

ARQ Design 
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ARQ Design 
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ARQ: Queue Switching -- Utilization 
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ARQ: Queue Switching -- QoS 
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Switching between Queues 

 

 

 

 

 

 

 

 

 

 

 

 Statistically analyze per-pool freed-server-time  distribution fitting 

(represent using known distributions) 

 Updated every time a new server is freed  

 From CDFs of per-pool freed-server-time compute the optimal switching 

point between queues 
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Switching between Queues 

 

 

 

 Optimization function:  
 

 Find switching time t s.t.:  

maximize Prob[server is freed],  

subj. total waiting time preserves QoS 

 

 

 Solving the optimization problem is fast (~msec) and scalable 

(O(n)) even for large numbers of applications and servers 
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Methodology 

 Workloads:  

 Single-threaded: SPEC CPU2006 

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specjbb 

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads 

 I/O-bound: Hadoop + data mining (Matlab)   

 

 Small scale:  

 40 servers, 10 server configurations (Xeons, Atoms, etc. ) 

 178 applications used in four workload scenarios:  

 Low load, high load and oversubscribed 
 

 Large scale: 1,000 EC2 servers, oversubscribed scenario (8,500 apps) 
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Evaluation: Small Scale 

 

 

 

 

 

 

 

 

 

 

 

 

 Paragon + ARQ preserves QoS for 95% of workloads  94% without ARQ 

 Average performance is 99.6% of optimal   
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Evaluation: Small Scale 

 

 

 

 

 

 

 

 

 

 

 

 Paragon + ARQ preserves QoS for 82% of workloads  64% without ARQ 

 Average performance is 98% of optimal   
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Evaluation: Large Scale (EC2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Paragon preserves QoS for 75% of workloads  61% without ARQ  

 Bounds degradation to less than 10% for 99% of workloads 
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Other experiments 

 Workload scenario with application phases (app requirements change) 

 Shortest Job First (SJF) and priorities 

 Queueing overheads 

 Sensitivity to parameters (e.g., number of queues, etc.) 

 Distributions of server freed times 
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Conclusions 

 ARQ leverages Paragon to classify applications in multiple 

queues such that QoS guarantees are preserved and 

utilization is maximized  

 It improves performance both for low and especially for 

oversubscribed workload scenarios 

 It is scalable and lightweight 
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Thank you 

Questions??  


