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Sutardja-‐Dai	  Hall	  
UC	  Berkeley	  
93,000	  sq.	  X.	  
with	  Digital	  Controls	  

73%	  of	  US	  electricity	  is	  
consumed	  in	  buildings	  
U.S.	  Energy	  Informa0on	  
Administra0on,	  2009	  
	  
2/3	  of	  building	  
occupants	  are	  
uncomfortable	  
UC	  Berkeley	  CBE	  Study	  of	  
30,000	  occupants	  
	  

>70%	  of	  large	  buildings	  
have	  digital	  controls	  
	  
	  



4/5/13! NSDI 2013: Lombard, IL! 3!

151	  Temperature	  Sensors	  

312	  Light	  Relays	  

12	  Variable	  Speed	  Fans	  

138	  Air	  Dampers	  

50	  Electrical	  Sub-‐meters	  

>	  6,000	  Sense	  and	  Control	  Points	  
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Applica0ons	  
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Ventilation Optimization:!
17% energy savings!

!

Automated Fault Detection: !
10 - 40% energy savings!

Occupant Lighting Controls!
50-60% savings!
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Goals and Challenges!
•  Portability!

–  Write once, run anywhere for buildings?!
–  Current practice: hand-coded logic!

•  Fault tolerance!
–  Partial failures of controllers!
–  Network partitions!
–  Current practice: really tough hardware!

•  Multiple processes!
–  Concurrent applications and users!
–  Current practice: none!

•  Federation!
–  Multiple heterogeneous systems !
–  Current practice: lots of stovepipes!

•  Scale!
•  Security & privacy!
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BOSS: Building Operating System Services!
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Challenge: Portability 

Buildings are custom designed!
!!
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Open	  area	  450	  

Hardware	  Abstrac0on	  
Physical	  view	  
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VAV	  S4-‐21	  

Hardware	  Abstrac0on	  
Systems	  View	  
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Hardware	  Abstrac0on	  
Controls	  view	  

SDH.MEC-08.S4-21:DMPR COMD
  device: 220018 instance: 101

SDH.MEC-08.S4-21:VLV COMD
 device: 220018 instance: 102 	  

Controller	  

Air	   Damper	   Reheat	  coil	  

BA
Cn

et
	  

legacy solution: overload point names!



Hardware Abstraction Layer!
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#VAV	  >	  $(120,	  20)	  



Summary: Hardware Abstraction Layer 

Program applications in terms of relationships 
between system components!

–  Computer systems tend to hide the physicality !
•  memory hierarchies, network topology!

–  Unavoidable in buildings!
•  “it gets too hot on the sunny side”!

!
Allow for scale by avoiding hard-coding!

–  “Run this in every room, except those on the north 
side”!
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BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!
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device!

controller!

head-end!

15!

Op0mizer	  

“transac0on”	  manager	  
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BOSS solution: “transactions”: write access to the building
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•  Writes	  to	  distributed	  resources	  
•  Which	  interact	  in	  physical	  space	  
•  Which	  are	  subject	  to	  failure	  
•  Extend	  writes	  with	  

–  Priori0es	  
–  Leases	  
–  No0fica0ons	  
–  Reversion	  sequences	  

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.
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Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-



More BOSS!
•  sMAP Hardware Presentation Layer!

–  30 Drivers, 30k data streams!
•  Archiver data storage service!

–  500 writes/sec!
–  Stream cleaning and processing !

•  Family of apps!
–  Personal ventilation and lighting control!
–  Electric grid-aware consumption!
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Name! Sensor Type! Access Method! Channels!

ISO Data ! CAISO, NYISO, PJM, MISO, ERCOT! Web scrape! 1211!

ACme devices! Plug-load electric meter! Wireless 6lowpan mesh! 344!

EECS submetering project! Dent Instruments PowerScout 18 electric meters! Modbus! 4644!

EECS steam and condensate! Cadillac condensate; Central Station steam meter! Modbus/TCP! 13!

UC Berkeley submetering 
feeds!

ION 6200, Obvius Aquisuite; PSL pQube, Veris 
Industries E30!

Mosbus/Ethernet, HTTP! 4269!

Sutardja Dai, Brower Hall BMS! Siemens Apogee BMS, Legrand WattStopper, 
Johnson Control BMS!

BACnet/IP! 4064!

UC Davis submetering feeds! Misc., Schneider Electric ION! OPC-DA! 34 (+)!

Weather feeds! Vaisala WXT520 rooftop weather station; 
Wunderground!

SDI-12, LabJack/Modbus, 
web scrape!

33!

CBE PMP toolkit! Dust motes;  New York Times BMS! CSV import; serial ! 874!

!
! !
!!

!!
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Takeaways	  
•  Applying	  computer	  systems	  design	  to	  buildings:	  lots	  of	  pieces,	  

poten0al	  
–  Control	  systems	  
–  Mechanical	  systems	  
–  Occupants	  

•  30%	  electricity	  +	  steam	  savings,	  60%	  ligh0ng	  savings	  in	  test	  apps	  

•  Many	  pieces	  at	  hnp://smap.cs.berkeley.edu	  

•  Control	  systems	  +	  CS	  future	  work	  	  
–  Making	  use	  of	  the	  torrent	  of	  data?	  
–  Compile/enforce	  constraints	  into	  the	  network?	  
–  How	  to	  verify	  applica0ons	  are	  behaving?	  
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Thank	  you!
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6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.
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Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

Write applications in terms of relationship 
between hardware elements!
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!
!
!
!

!

legacy solution: encode everything in point name!

SDH.MEC-08.S5-01.AIR_VOLUME
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BOSS	  

sMAP sMAP sMAP sMAP

Transaction ManagerTime Series Service

sMAP

Transaction ClientTime-series Client

Auth Service HAL Service

submit
callback

application logic

BOSS boundary

Runtime Logic

system 
libraries

Model Training

publish command

request

authorize

1

2

3 4

co
nt

ro
l p

ro
ce

ss

RS-485 BACnet/IPOPC-DA 6loWPANXML/HTTP

Authorization token

5 verify

historical
data
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1.  Hardware presentation 
layer: sMAP!

2.  Hardware abstraction layer: 
device-specific logic!

3.  Time-series service: the 
archiver!

4.  Reliable control inputs: the 
transaction manager!

5.  Security: the authorization 
service!

a	  collec0on	  of	  services	  enabling	  
portable,	  robust	  applica:ons	  
for	  the	  physical	  environment	  
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26	  

writer 1 value: 69F 69	  

writer 2 value: 73F 73	  
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•  No	  arbitra0on	  between	  applica0ons	  
•  Orphaned	  writes	  



Command Sequence 

1.  Set damper to 100% open!
2.  Set valve to 0% open!
3.  … wait 10 minutes!
4.  Reset to “whatever was happening before”!
!
What if…!
1.  #1 or #2 fail?!
2.  Client fails/becomes partitioned during #3?!
3.  Another application tries to do something?!
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28	  

writer 1 value: 69F priority: 3 lease: 3600s

writer 2 value: 73F priority: 1 lease: 300s 

69	  

73	  

present value: 69cfmpresent value: 73cfm

<time passes>

writer 2 clear

BOSS solution: “transactions”

pr
io
rit
y	  
ar
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y	  

1	  

16	  

writer 1 crashes
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Extend	  writes	  with	  
–  Priori0es	  
–  Leases	  
–  No0fica0ons	  
–  Reversion	  sequences	  

ov
er
rid

de
n!
	  

… writer 1 revert sequence runs

71	  


