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Applica0ons	
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Ventilation Optimization:!
17% energy savings!

!

Automated Fault Detection: !
10 - 40% energy savings!

Occupant Lighting Controls!
50-60% savings!
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Goals and Challenges!
•  Portability!

–  Write once, run anywhere for buildings?!
–  Current practice: hand-coded logic!

•  Fault tolerance!
–  Partial failures of controllers!
–  Network partitions!
–  Current practice: really tough hardware!

•  Multiple processes!
–  Concurrent applications and users!
–  Current practice: none!

•  Federation!
–  Multiple heterogeneous systems !
–  Current practice: lots of stovepipes!

•  Scale!
•  Security & privacy!
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BOSS: Building Operating System Services!
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Challenge: Portability 

Buildings are custom designed!
!!
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  device: 220018 instance: 101
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Hardware Abstraction Layer!
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Summary: Hardware Abstraction Layer 

Program applications in terms of relationships 
between system components!

–  Computer systems tend to hide the physicality !
•  memory hierarchies, network topology!

–  Unavoidable in buildings!
•  “it gets too hot on the sunny side”!

!
Allow for scale by avoiding hard-coding!

–  “Run this in every room, except those on the north 
side”!
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BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n 
+ 

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

14!4/5/13! NSDI 2013: Lombard, IL!



device!

controller!

head-end!

15!

Op0mizer	
  

“transac0on”	
  manager	
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BOSS solution: “transactions”: write access to the building
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•  Writes	
  to	
  distributed	
  resources	
  
•  Which	
  interact	
  in	
  physical	
  space	
  
•  Which	
  are	
  subject	
  to	
  failure	
  
•  Extend	
  writes	
  with	
  

–  Priori0es	
  
–  Leases	
  
–  No0fica0ons	
  
–  Reversion	
  sequences	
  

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.
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Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-



More BOSS!
•  sMAP Hardware Presentation Layer!

–  30 Drivers, 30k data streams!
•  Archiver data storage service!

–  500 writes/sec!
–  Stream cleaning and processing !

•  Family of apps!
–  Personal ventilation and lighting control!
–  Electric grid-aware consumption!
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Name! Sensor Type! Access Method! Channels!

ISO Data ! CAISO, NYISO, PJM, MISO, ERCOT! Web scrape! 1211!

ACme devices! Plug-load electric meter! Wireless 6lowpan mesh! 344!

EECS submetering project! Dent Instruments PowerScout 18 electric meters! Modbus! 4644!

EECS steam and condensate! Cadillac condensate; Central Station steam meter! Modbus/TCP! 13!

UC Berkeley submetering 
feeds!

ION 6200, Obvius Aquisuite; PSL pQube, Veris 
Industries E30!

Mosbus/Ethernet, HTTP! 4269!

Sutardja Dai, Brower Hall BMS! Siemens Apogee BMS, Legrand WattStopper, 
Johnson Control BMS!

BACnet/IP! 4064!

UC Davis submetering feeds! Misc., Schneider Electric ION! OPC-DA! 34 (+)!

Weather feeds! Vaisala WXT520 rooftop weather station; 
Wunderground!

SDI-12, LabJack/Modbus, 
web scrape!

33!

CBE PMP toolkit! Dust motes;  New York Times BMS! CSV import; serial ! 874!

!
! !
!!

!!
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Takeaways	
  
•  Applying	
  computer	
  systems	
  design	
  to	
  buildings:	
  lots	
  of	
  pieces,	
  

poten0al	
  
–  Control	
  systems	
  
–  Mechanical	
  systems	
  
–  Occupants	
  

•  30%	
  electricity	
  +	
  steam	
  savings,	
  60%	
  ligh0ng	
  savings	
  in	
  test	
  apps	
  

•  Many	
  pieces	
  at	
  hnp://smap.cs.berkeley.edu	
  

•  Control	
  systems	
  +	
  CS	
  future	
  work	
  	
  
–  Making	
  use	
  of	
  the	
  torrent	
  of	
  data?	
  
–  Compile/enforce	
  constraints	
  into	
  the	
  network?	
  
–  How	
  to	
  verify	
  applica0ons	
  are	
  behaving?	
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6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.
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Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

Write applications in terms of relationship 
between hardware elements!
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!
!
!
!

!

legacy solution: encode everything in point name!

SDH.MEC-08.S5-01.AIR_VOLUME
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BOSS	
  

sMAP sMAP sMAP sMAP

Transaction ManagerTime Series Service

sMAP

Transaction ClientTime-series Client

Auth Service HAL Service

submit
callback

application logic

BOSS boundary

Runtime Logic
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Model Training
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1.  Hardware presentation 
layer: sMAP!

2.  Hardware abstraction layer: 
device-specific logic!

3.  Time-series service: the 
archiver!

4.  Reliable control inputs: the 
transaction manager!

5.  Security: the authorization 
service!

a	
  collec0on	
  of	
  services	
  enabling	
  
portable,	
  robust	
  applica:ons	
  
for	
  the	
  physical	
  environment	
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writer 1 value: 69F
 69	
  

writer 2 value: 73F
 73	
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•  No	
  arbitra0on	
  between	
  applica0ons	
  
•  Orphaned	
  writes	
  



Command Sequence 

1.  Set damper to 100% open!
2.  Set valve to 0% open!
3.  … wait 10 minutes!
4.  Reset to “whatever was happening before”!
!
What if…!
1.  #1 or #2 fail?!
2.  Client fails/becomes partitioned during #3?!
3.  Another application tries to do something?!
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writer 1 value: 69F priority: 3 lease: 3600s


writer 2 value: 73F priority: 1 lease: 300s 


69	
  

73	
  

present value: 69cfm
present value: 73cfm


<time passes>


writer 2 clear


BOSS solution: “transactions”
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1	
  

16	
  

writer 1 crashes
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Extend	
  writes	
  with	
  
–  Priori0es	
  
–  Leases	
  
–  No0fica0ons	
  
–  Reversion	
  sequences	
  

ov
er
rid

de
n!
	
  

… writer 1 revert sequence runs
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