
BOSS:	 Building	 Opera0ng	 System	 Services	
Stephen	 Dawson-‐Haggerty,	 Andrew	 Krioukov,	 Jay	 Taneja,	 Sagar	

Karandikar,	 Gabe	 Fierro,	 Nikita	 Kitaev,	 and	 David	 Culler	
Computer	 Science	 Division	

University	 of	 California,	 Berkeley	
©	 2013	 All	 rights	 reserved	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 1	

4/5/13! NSDI 2013: Lombard, IL! 2!

Sutardja-‐Dai	 Hall	
UC	 Berkeley	
93,000	 sq.	 X.	
with	 Digital	 Controls	

73%	 of	 US	 electricity	 is	
consumed	 in	 buildings	
U.S.	 Energy	 Informa0on	
Administra0on,	 2009	
	
2/3	 of	 building	
occupants	 are	
uncomfortable	
UC	 Berkeley	 CBE	 Study	 of	
30,000	 occupants	
	

>70%	 of	 large	 buildings	
have	 digital	 controls	
	
	

4/5/13! NSDI 2013: Lombard, IL! 3!

151	 Temperature	 Sensors	

312	 Light	 Relays	

12	 Variable	 Speed	 Fans	

138	 Air	 Dampers	

50	 Electrical	 Sub-‐meters	

>	 6,000	 Sense	 and	 Control	 Points	

4/5/13! NSDI 2013: Lombard, IL! 4!

Applica0ons	

08/10 08/10 08/11 08/11 08/12 08/12 08/13 08/13 08/14 08/14
0

2

4

6

8

10
x 104

Ai
r F

lo
w

 (C
FM

)

Fresh air
Return Air

08/10 08/10 08/11 08/11 08/12 08/12 08/13 08/13 08/14 08/14

0

20

40

60

80

100

Fr
es

h
Ai

r (
%

)

Ventilation Optimization:!
17% energy savings!

!

Automated Fault Detection: !
10 - 40% energy savings!

Occupant Lighting Controls!
50-60% savings!

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 5	

Goals and Challenges!
•  Portability!

–  Write once, run anywhere for buildings?!
–  Current practice: hand-coded logic!

•  Fault tolerance!
–  Partial failures of controllers!
–  Network partitions!
–  Current practice: really tough hardware!

•  Multiple processes!
–  Concurrent applications and users!
–  Current practice: none!

•  Federation!
–  Multiple heterogeneous systems !
–  Current practice: lots of stovepipes!

•  Scale!
•  Security & privacy!

Panel 1 Panel 2

A

B

A

B

Panel 1 Panel 2

A

B

A

B

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B

4/5/13! NSDI 2013: Lombard, IL! 6!

BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

7!4/5/13! NSDI 2013: Lombard, IL!

Challenge: Portability

Buildings are custom designed!
!!

4/5/13! NSDI 2013: Lombard, IL! 9!

Open	 area	 450	

Hardware	 Abstrac0on	
Physical	 view	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 10	
VAV	 S4-‐21	

Hardware	 Abstrac0on	
Systems	 View	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 11	

Hardware	 Abstrac0on	
Controls	 view	

SDH.MEC-08.S4-21:DMPR COMD
 device: 220018 instance: 101

SDH.MEC-08.S4-21:VLV COMD
 device: 220018 instance: 102 	

Controller	

Air	 Damper	 Reheat	 coil	

BA
Cn

et
	

legacy solution: overload point names!

Hardware Abstraction Layer!

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 12	

#VAV	 >	 $(120,	 20)	

Summary: Hardware Abstraction Layer

Program applications in terms of relationships
between system components!

–  Computer systems tend to hide the physicality !
•  memory hierarchies, network topology!

–  Unavoidable in buildings!
•  “it gets too hot on the sunny side”!

!
Allow for scale by avoiding hard-coding!

–  “Run this in every room, except those on the north
side”!

4/5/13! NSDI 2013: Lombard, IL! 13!

BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

14!4/5/13! NSDI 2013: Lombard, IL!

device!

controller!

head-end!

15!

Op0mizer	

“transac0on”	 manager	

16!

BOSS solution: “transactions”: write access to the building

4/5/13! NSDI 2013: Lombard, IL!

•  Writes	 to	 distributed	 resources	
•  Which	 interact	 in	 physical	 space	
•  Which	 are	 subject	 to	 failure	
•  Extend	 writes	 with	

–  Priori0es	
–  Leases	
–  No0fica0ons	
–  Reversion	 sequences	

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.

Te
m

p
 (

°F
)

req_auth
#VAV[Floor=4]
set_temp([65,75])
get_temp()

Temperature Float App

SiemensReheatVAV
Driver

TX Manager

sMAP
BACnet

HALAuth
(human/auto approval)

lookup
#VAV

[Floor=4]

[s4-20,
s4-21,
...]

Approved
token=ABC set_temp(65)

token=ABC

Success

write
life=15verify

set_temp(65), token=ABC
Success txid=123

write revertSuccess

Time

setpoint
room temp

6
9

 7

4

Initialization

Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

More BOSS!
•  sMAP Hardware Presentation Layer!

–  30 Drivers, 30k data streams!
•  Archiver data storage service!

–  500 writes/sec!
–  Stream cleaning and processing !

•  Family of apps!
–  Personal ventilation and lighting control!
–  Electric grid-aware consumption!

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 17	

Name! Sensor Type! Access Method! Channels!

ISO Data ! CAISO, NYISO, PJM, MISO, ERCOT! Web scrape! 1211!

ACme devices! Plug-load electric meter! Wireless 6lowpan mesh! 344!

EECS submetering project! Dent Instruments PowerScout 18 electric meters! Modbus! 4644!

EECS steam and condensate! Cadillac condensate; Central Station steam meter! Modbus/TCP! 13!

UC Berkeley submetering
feeds!

ION 6200, Obvius Aquisuite; PSL pQube, Veris
Industries E30!

Mosbus/Ethernet, HTTP! 4269!

Sutardja Dai, Brower Hall BMS! Siemens Apogee BMS, Legrand WattStopper,
Johnson Control BMS!

BACnet/IP! 4064!

UC Davis submetering feeds! Misc., Schneider Electric ION! OPC-DA! 34 (+)!

Weather feeds! Vaisala WXT520 rooftop weather station;
Wunderground!

SDI-12, LabJack/Modbus,
web scrape!

33!

CBE PMP toolkit! Dust motes; New York Times BMS! CSV import; serial ! 874!

!
! !
!!

!!

18	 4/5/13	 NSDI	 2013:	 Lombard,	 IL	

Takeaways	
•  Applying	 computer	 systems	 design	 to	 buildings:	 lots	 of	 pieces,	

poten0al	
–  Control	 systems	
–  Mechanical	 systems	
–  Occupants	

•  30%	 electricity	 +	 steam	 savings,	 60%	 ligh0ng	 savings	 in	 test	 apps	

•  Many	 pieces	 at	 hnp://smap.cs.berkeley.edu	

•  Control	 systems	 +	 CS	 future	 work	 	
–  Making	 use	 of	 the	 torrent	 of	 data?	
–  Compile/enforce	 constraints	 into	 the	 network?	
–  How	 to	 verify	 applica0ons	 are	 behaving?	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 19	

Thank	 you!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

20	 4/5/13	 NSDI	 2013:	 Lombard,	 IL	

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.

Te
m

p
(°

F)

req_auth
#VAV[Floor=4]
set_temp([65,75])
get_temp()

Temperature Float App

SiemensReheatVAV
Driver

TX Manager

sMAP
BACnet

HALAuth
(human/auto approval)

lookup
#VAV

[Floor=4]

[s4-20,
s4-21,
...]

Approved
token=ABC set_temp(65)

token=ABC

Success

write
life=15verify

set_temp(65), token=ABC
Success txid=123

write revertSuccess

Time

setpoint
room temp

69

 7

4

Initialization

Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

Write applications in terms of relationship
between hardware elements!

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 21	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 22	

!
!
!
!

!

legacy solution: encode everything in point name!

SDH.MEC-08.S5-01.AIR_VOLUME

23	 4/5/13	 NSDI	 2013:	 Lombard,	 IL	

BOSS	

sMAP sMAP sMAP sMAP

Transaction ManagerTime Series Service

sMAP

Transaction ClientTime-series Client

Auth Service HAL Service

submit
callback

application logic

BOSS boundary

Runtime Logic

system
libraries

Model Training

publish command

request

authorize

1

2

3 4

co
nt

ro
l p

ro
ce

ss

RS-485 BACnet/IPOPC-DA 6loWPANXML/HTTP

Authorization token

5 verify

historical
data

4/5/13	 NSDI	 2013:	 Lombard,	 IL	 24	

1.  Hardware presentation
layer: sMAP!

2.  Hardware abstraction layer:
device-specific logic!

3.  Time-series service: the
archiver!

4.  Reliable control inputs: the
transaction manager!

5.  Security: the authorization
service!

a	 collec0on	 of	 services	 enabling	
portable,	 robust	 applica:ons	
for	 the	 physical	 environment	

4/5/13! NSDI 2013: Lombard, IL! 25!

26	

writer 1 value: 69F 69	

writer 2 value: 73F 73	

4/5/13	 NSDI	 2013:	 Lombard,	 IL	

•  No	 arbitra0on	 between	 applica0ons	
•  Orphaned	 writes	

Command Sequence

1.  Set damper to 100% open!
2.  Set valve to 0% open!
3.  … wait 10 minutes!
4.  Reset to “whatever was happening before”!
!
What if…!
1.  #1 or #2 fail?!
2.  Client fails/becomes partitioned during #3?!
3.  Another application tries to do something?!

4/5/13! NSDI 2013: Lombard, IL! 27!

28	

writer 1 value: 69F priority: 3 lease: 3600s

writer 2 value: 73F priority: 1 lease: 300s

69	

73	

present value: 69cfmpresent value: 73cfm

<time passes>

writer 2 clear

BOSS solution: “transactions”

pr
io
rit
y	
ar
ra
y	

1	

16	

writer 1 crashes

4/5/13	 NSDI	 2013:	 Lombard,	 IL	

Extend	 writes	 with	
–  Priori0es	
–  Leases	
–  No0fica0ons	
–  Reversion	 sequences	

ov
er
rid

de
n!
	

… writer 1 revert sequence runs

71	

