
BOSS:	
 Building	
 Opera0ng	
 System	
 Services	

Stephen	
 Dawson-­‐Haggerty,	
 Andrew	
 Krioukov,	
 Jay	
 Taneja,	
 Sagar	

Karandikar,	
 Gabe	
 Fierro,	
 Nikita	
 Kitaev,	
 and	
 David	
 Culler	

Computer	
 Science	
 Division	

University	
 of	
 California,	
 Berkeley	

©	
 2013	
 All	
 rights	
 reserved	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 1	

4/5/13! NSDI 2013: Lombard, IL! 2!

Sutardja-­‐Dai	
 Hall	

UC	
 Berkeley	

93,000	
 sq.	
 X.	

with	
 Digital	
 Controls	

73%	
 of	
 US	
 electricity	
 is	

consumed	
 in	
 buildings	

U.S.	
 Energy	
 Informa0on	

Administra0on,	
 2009	

	

2/3	
 of	
 building	

occupants	
 are	

uncomfortable	

UC	
 Berkeley	
 CBE	
 Study	
 of	

30,000	
 occupants	

	

>70%	
 of	
 large	
 buildings	

have	
 digital	
 controls	

	

	

4/5/13! NSDI 2013: Lombard, IL! 3!

151	
 Temperature	
 Sensors	

312	
 Light	
 Relays	

12	
 Variable	
 Speed	
 Fans	

138	
 Air	
 Dampers	

50	
 Electrical	
 Sub-­‐meters	

>	
 6,000	
 Sense	
 and	
 Control	
 Points	

4/5/13! NSDI 2013: Lombard, IL! 4!

Applica0ons	

08/10 08/10 08/11 08/11 08/12 08/12 08/13 08/13 08/14 08/14
0

2

4

6

8

10
x 104

Ai
r F

lo
w

 (C
FM

)

Fresh air
Return Air

08/10 08/10 08/11 08/11 08/12 08/12 08/13 08/13 08/14 08/14

0

20

40

60

80

100

Fr
es

h
Ai

r (
%

)

Ventilation Optimization:!
17% energy savings!

!

Automated Fault Detection: !
10 - 40% energy savings!

Occupant Lighting Controls!
50-60% savings!

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 5	

Goals and Challenges!
•  Portability!

–  Write once, run anywhere for buildings?!
–  Current practice: hand-coded logic!

•  Fault tolerance!
–  Partial failures of controllers!
–  Network partitions!
–  Current practice: really tough hardware!

•  Multiple processes!
–  Concurrent applications and users!
–  Current practice: none!

•  Federation!
–  Multiple heterogeneous systems !
–  Current practice: lots of stovepipes!

•  Scale!
•  Security & privacy!

Panel 1 Panel 2

A

B

A

B

Panel 1 Panel 2

A

B

A

B

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

1
5
9
13

17
21
25

29
33
37

41

3
7
11
15

19
23
27

31
35
39

A
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B
2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

2
6
10
14

18
22
26

30
34
38

42

4
8
12
16

20
24
28

32
36
40

B

4/5/13! NSDI 2013: Lombard, IL! 6!

BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

7!4/5/13! NSDI 2013: Lombard, IL!

Challenge: Portability

Buildings are custom designed!
!!

4/5/13! NSDI 2013: Lombard, IL! 9!

Open	
 area	
 450	

Hardware	
 Abstrac0on	

Physical	
 view	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 10	

VAV	
 S4-­‐21	

Hardware	
 Abstrac0on	

Systems	
 View	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 11	

Hardware	
 Abstrac0on	

Controls	
 view	

SDH.MEC-08.S4-21:DMPR COMD

 device: 220018 instance: 101

SDH.MEC-08.S4-21:VLV COMD

 device: 220018 instance: 102 	

Controller	

Air	
 Damper	
 Reheat	
 coil	

BA
Cn

et
	

legacy solution: overload point names!

Hardware Abstraction Layer!

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 12	

#VAV	
 >	
 $(120,	
 20)	

Summary: Hardware Abstraction Layer

Program applications in terms of relationships
between system components!

–  Computer systems tend to hide the physicality !
•  memory hierarchies, network topology!

–  Unavoidable in buildings!
•  “it gets too hot on the sunny side”!

!
Allow for scale by avoiding hard-coding!

–  “Run this in every room, except those on the north
side”!

4/5/13! NSDI 2013: Lombard, IL! 13!

BOSS: Building Operating System Services!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

14!4/5/13! NSDI 2013: Lombard, IL!

device!

controller!

head-end!

15!

Op0mizer	

“transac0on”	
 manager	

16!

BOSS solution: “transactions”: write access to the building

4/5/13! NSDI 2013: Lombard, IL!

•  Writes	
 to	
 distributed	
 resources	

•  Which	
 interact	
 in	
 physical	
 space	

•  Which	
 are	
 subject	
 to	
 failure	

•  Extend	
 writes	
 with	

–  Priori0es	

–  Leases	

–  No0fica0ons	

–  Reversion	
 sequences	

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.

Te
m

p
 (

°F
)

req_auth
#VAV[Floor=4]
set_temp([65,75])
get_temp()

Temperature Float App

SiemensReheatVAV
Driver

TX Manager

sMAP
BACnet

HALAuth
(human/auto approval)

lookup
#VAV

[Floor=4]

[s4-20,
s4-21,
...]

Approved
token=ABC set_temp(65)

token=ABC

Success

write
life=15verify

set_temp(65), token=ABC
Success txid=123

write revertSuccess

Time

setpoint
room temp

6
9

 7

4

Initialization

Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

More BOSS!
•  sMAP Hardware Presentation Layer!

–  30 Drivers, 30k data streams!
•  Archiver data storage service!

–  500 writes/sec!
–  Stream cleaning and processing !

•  Family of apps!
–  Personal ventilation and lighting control!
–  Electric grid-aware consumption!

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 17	

Name! Sensor Type! Access Method! Channels!

ISO Data ! CAISO, NYISO, PJM, MISO, ERCOT! Web scrape! 1211!

ACme devices! Plug-load electric meter! Wireless 6lowpan mesh! 344!

EECS submetering project! Dent Instruments PowerScout 18 electric meters! Modbus! 4644!

EECS steam and condensate! Cadillac condensate; Central Station steam meter! Modbus/TCP! 13!

UC Berkeley submetering
feeds!

ION 6200, Obvius Aquisuite; PSL pQube, Veris
Industries E30!

Mosbus/Ethernet, HTTP! 4269!

Sutardja Dai, Brower Hall BMS! Siemens Apogee BMS, Legrand WattStopper,
Johnson Control BMS!

BACnet/IP! 4064!

UC Davis submetering feeds! Misc., Schneider Electric ION! OPC-DA! 34 (+)!

Weather feeds! Vaisala WXT520 rooftop weather station;
Wunderground!

SDI-12, LabJack/Modbus,
web scrape!

33!

CBE PMP toolkit! Dust motes; New York Times BMS! CSV import; serial ! 874!

!
! !
!!

!!

18	
 4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	

Takeaways	

•  Applying	
 computer	
 systems	
 design	
 to	
 buildings:	
 lots	
 of	
 pieces,	

poten0al	

–  Control	
 systems	

–  Mechanical	
 systems	

–  Occupants	

•  30%	
 electricity	
 +	
 steam	
 savings,	
 60%	
 ligh0ng	
 savings	
 in	
 test	
 apps	

•  Many	
 pieces	
 at	
 hnp://smap.cs.berkeley.edu	

•  Control	
 systems	
 +	
 CS	
 future	
 work	
 	

–  Making	
 use	
 of	
 the	
 torrent	
 of	
 data?	

–  Compile/enforce	
 constraints	
 into	
 the	
 network?	

–  How	
 to	
 verify	
 applica0ons	
 are	
 behaving?	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 19	

Thank	
 you!

HPL! HPL!

Hardware Abstraction Layer!

!
Auth.!
!

Trans. mgr.!Time-series!Se
cu

rit
y!

Ab
st

ra
ct

io
n!

Is
ol

at
io

n
+

Sc
he

du
lin

g!

HPL! HPL!

Control processes!
H

is
to

ry
!Fa

ul
t t

ol
er

an
ce
!

“Kernel” interface!

20	
 4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [10, 5]. Keeping ventilation rates at the required
minimum is highly desirable for energy savings since
it reduces fan power and the need for air conditioning;
however, this is difficult to do in traditional building con-
trol systems because separate control loops are in charge
of varying the fresh air intake into the building, control-
ling the per-room airflow, and detecting occupants. Oc-
cupancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 32]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.

Te
m

p
(°

F)

req_auth
#VAV[Floor=4]
set_temp([65,75])
get_temp()

Temperature Float App

SiemensReheatVAV
Driver

TX Manager

sMAP
BACnet

HALAuth
(human/auto approval)

lookup
#VAV

[Floor=4]

[s4-20,
s4-21,
...]

Approved
token=ABC set_temp(65)

token=ABC

Success

write
life=15verify

set_temp(65), token=ABC
Success txid=123

write revertSuccess

Time

setpoint
room temp

69

 7

4

Initialization

Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-

Write applications in terms of relationship
between hardware elements!

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 21	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 22	

!
!
!
!

!

legacy solution: encode everything in point name!

SDH.MEC-08.S5-01.AIR_VOLUME

23	
 4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	

BOSS	

sMAP sMAP sMAP sMAP

Transaction ManagerTime Series Service

sMAP

Transaction ClientTime-series Client

Auth Service HAL Service

submit
callback

application logic

BOSS boundary

Runtime Logic

system
libraries

Model Training

publish command

request

authorize

1

2

3 4

co
nt

ro
l p

ro
ce

ss

RS-485 BACnet/IPOPC-DA 6loWPANXML/HTTP

Authorization token

5 verify

historical
data

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	
 24	

1.  Hardware presentation
layer: sMAP!

2.  Hardware abstraction layer:
device-specific logic!

3.  Time-series service: the
archiver!

4.  Reliable control inputs: the
transaction manager!

5.  Security: the authorization
service!

a	
 collec0on	
 of	
 services	
 enabling	

portable,	
 robust	
 applica:ons	

for	
 the	
 physical	
 environment	

4/5/13! NSDI 2013: Lombard, IL! 25!

26	

writer 1 value: 69F
 69	

writer 2 value: 73F
 73	

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	

•  No	
 arbitra0on	
 between	
 applica0ons	

•  Orphaned	
 writes	

Command Sequence

1.  Set damper to 100% open!
2.  Set valve to 0% open!
3.  … wait 10 minutes!
4.  Reset to “whatever was happening before”!
!
What if…!
1.  #1 or #2 fail?!
2.  Client fails/becomes partitioned during #3?!
3.  Another application tries to do something?!

4/5/13! NSDI 2013: Lombard, IL! 27!

28	

writer 1 value: 69F priority: 3 lease: 3600s

writer 2 value: 73F priority: 1 lease: 300s

69	

73	

present value: 69cfm
present value: 73cfm

<time passes>

writer 2 clear

BOSS solution: “transactions”

pr
io
rit
y	

ar
ra
y	

1	

16	

writer 1 crashes

4/5/13	
 NSDI	
 2013:	
 Lombard,	
 IL	

Extend	
 writes	
 with	

–  Priori0es	

–  Leases	

–  No0fica0ons	

–  Reversion	
 sequences	

ov
er
rid

de
n!
	

… writer 1 revert sequence runs

71	

