
FiE on Firmware
Finding Vulnerabilities in Embedded Systems

using Symbolic Execution

Drew Davidson
Ben Moench
Somesh Jha

Thomas Ristenpart

1

• Symbolic execution tailored to
embedded firmware
– Detects common firmware

vulnerabilities
– Deals with domain-specific

challenges
– Able to verify small programs

• Tested on 99 programs
– Found 22 bugs
– Verified memory safety for 52

programs

FiE in a Nutshell

2

[Frisby et al., 2012]

Example Attack: WOOT 2012

3

Encrypted card data

[Frisby et al., 2012]

Command

Secret Key

Example Attack: WOOT 2012

4

16-bit low power device
C firmware
Low-level hardware interaction

Buffer
Overflow!

Embedded Systems: Lots of Attacks

5
… Little Work on Detecting Vulnerabilities

Embedded Systems: Lots of Attacks

6
… Little Work on Detecting Vulnerabilities

Source code analysis is
helpful on desktop

Could be transitioned to

firmware

• Represents program
input as sets of
constraints

• Explores multiple feasible
paths for bugs

• Provide detailed trace to
vulnerability

• KLEE
– Popular, mature tool
– Average > 90% line

coverage
– Finds memory safety

violations

Symbolic Execution

7

X ≠ 0

X > 0 X < 0

X ≠ 0

X < 0

• Represents program
input as sets of
constraints

• Explores multiple feasible
paths for bugs

• Provide detailed trace to
vulnerability

• KLEE
– Popular, mature tool
– Average > 90% line

coverage
– Finds memory safety

violations

Symbolic Execution

8

KLEE

LLVM bitcode

C source code

Clang

Error trace

• Why MSP430?
– Popular, widely deployed
– Security applications
– Has clang support

• KLEE ported to 16-bit
• Evaluated 99 programs

– 12 TI Community
– 78 Github
– 8 USB protocol stack
– 1 Synthetic (cardreader)

• Average instruction
coverage for MSP430 < 6%
– Most programs < 1%

KLEE: Performance on MSP430

9

LLVM bitcode

Error trace

16-bit KLEE

Clang
(MSP430)

Firmware
source code (C)

Challenges of MSP430 Code

10

while (true){

 if (P1IN)

 len = P1IN;

 _BIS_SR(GIE);

 if (! P1IN)

 strncpy(dst,src,len);

}

 PORT_2_ISR

P1DIR = 0x0;

- Peripheral access with I/O Ports

> 400 variants of MSP430

Challenges of MSP430 Code

11

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Challenge #1
Architecture

Diversity

- Peripheral access with I/O Ports
- Environment interaction via

implicit memory mapping

Challenges of MSP430 Code

12

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Challenge #2
Peripheral
semantics

Challenge #1
Architecture

Diversity

value?

Challenges of MSP430 Code

13

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Challenge #3
Interrupt-

driven
programs

Challenge #2
Peripheral
semantics

Challenge #1
Architecture

Diversity

FiE on Firmware

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

• Handles over 400
variants of the MSP430

• Bugfinding

– Memory safety (21)

– Peripheral misuse (1)

• Verification (53/99)

• Customizable

FiE on Firmware

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

Challenge #3
Interrupt-

driven
programs

Challenge #1
Architecture

Diversity
Challenge #2

Peripheral
semantics

verification

FiE on Architecture Diversity

16

Memory size

Memory region types

Available interrupts

Variations in layout and capabilities
of the microcontroller

FiE on Architecture Diversity

17

Memory size

Memory region types

Available interrupts

Chip layout spec

layout 0x10000

range 0x1080 0x10bf flash

range 0x10c0 0x10ff flash

addr P1IN 0x20 1

interrupt PORT2_ISR check_PORT2

Domain-specific specification language
Flat text file for manual manipulation
Script support for msp430-gcc export

Variations in layout and capabilities
of the microcontroller

FiE on Memory

18

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Chip Layout Spec

addr P1IN 0x20 1

Memory Library

P1IN_READ:

 ???

FiE on Memory

19

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Chip Layout Spec

addr P1IN 0x20 1

Memory Library

∂1

∂3

P1IN_READ:
fresh_symbolic()

Assume adversary controls peripherals
Allow users to supply custom libraries

∂2

FiE on Interrupts

20

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Interrupt Library

Check_PORT2:

Interrupts On?

Port 2 Priority?

Chip Layout Spec

interrupt PORT2_ISR check_PORT2

Adversary controls interrupts
Split state at every valid point

Challenges and Opportunities

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

Challenge #3
Interrupt-

driven
programs

Challenge #1
Architecture

Diversity
Challenge #2

Peripheral
semantics

verification

Challenges and Opportunities

LLVM Bitcode

Error
Trace

Optimized
Symbolic

Execution Engine

Clang
(MSP430)

Firmware
Source Code

Chip Layout Spec

Memory Spec

Interrupt Spec

• Verification

– Outside scope of
traditional symbolic
execution
• State space intractable

• Key Insight

– Firmware state space
much smaller

verification

FiE on Verification

23

while (true){

 if (*0x20)

 len = *0x20;

 _BIS_SR(GIE);

 if (!*0x20)

 strncpy(dst,src,len);

}

 PORT_2_ISR

*0x22 = 0x0;

Infinite program paths
Analysis stuck executing already-seen states
Prevents verification

FiE on Verification

• Log all execution states

• Pruning
– Detect redundant states and

terminate them

– Redundant states; redundant
successors

• Smudging
– replace frequently-changing

concrete memory with symbolic

– Complete
• May have FPs

FiE on Verification

• Log all execution states

• Pruning
– Detect redundant states and

terminate them

– Redundant states; redundant
successors

• Smudging
– replace frequently-changing

concrete memory with symbolic

– Complete
• May have FPs

More details in the paper

FiE on Firmware

Optimized
Symbolic

Execution Engine

Chip Layout Spec

Memory Spec

Interrupt Spec

Challenge #3
Interrupt-

driven
programs

Challenge #1
Architecture

Diversity

verification

Challenge #2
Peripheral
semantics

Evaluation

• Amazon EC2
– Automated tests

(scripts available)

– 50 minute runs

• Test Versions:
– 16-bit KLEE

• baseline

– FiE
• Symbolic + plugin

– FiE + pruning

– FiE + pruning + smudging

27

Corpus:
12 TI Community
1 Synthetic (cardreader)
8 USB protocol stack
78 Github

• 22 bugs across the
corpus (smudge)

– Verified manually

– 21 found in the
MSP430 USB
protocol stack

– 1 misuse of flash
memory

• Emailed developers

Bugfinding Results

28

Coverage Results

29

Mode
Average %
Coverage

False
Positives

Verified

Baseline 5.9 92 0

Symbolic 71.1 0 7

Prune 74.4 0 35

Smudge 79.4 1 53

High-Challenge Programs

• FiE does well for small
(but still useful!) programs

• For large programs,
verification out of reach

• Reduce interrupts fired

– Conservative: interrupts at
each instruction

– Relaxed: interrupts at each
basic block

30

13 largest programs

In
st

ru
ct

io
n

 C
o

ve
ra

ge
 (

%
)

Future Work

• FiE breaks new ground

– Not the final word by far

• One point in analysis
design space

– Dynamic testing

– Concolic execution

– Static analysis

• Language Design

31

Thanks

Summary
 Initiated work for MSP430 automated
 bugfinding

 Modular, conservative symbolic execution

 Supported verification and bugfinding

Download FiE
 www.cs.wisc.edu/~davidson/fie

Thanks!

32

http://www.cs.wisc.edu/~davidson/fie

• While Pruning:

– Check unique values for
each memory object

– If above threshold,
replace with wildcard (*)

• Makes pruning easier

– Redundant states sooner

• Complete

– May cause false positives

Q: Smudging example

33

Lloop:i = 0

Lloop:i = 1

Lloop:i = 2

…

Lloop:i = *

Lend:i = * Lloop:i = *

Q: Corpus Code Size

34

< 201 LOC

> 200 LOC

Q: Why didn’t you find more bugs?

• It’s easy to get hobbyist
code

• The production code that
we do have indicates a
problem

• The tractability of
hobbyist code indicates
an opportunity for deeper
analysis

35

• Commercial analysis tool

• Static Analysis

• Has an MSP430 target

– License forbids published
comparison

Q: What about Coverity?

36

• KLEE is a great tool

– The performance is great

– The code is great

• We use it in a way that it
wasn’t intended for

Q: What Does this Mean for KLEE?

37

