FIE on Firmware

Finding Vulnerabilities in Embedded Systems
using Symbolic Execution

Drew Davidson
Ben Moench
Somesh Jha

Thomas Ristenpart

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

FiE in @ Nutshell

* Symbolic execution tailored to
embedded firmware

— Detects common firmware
vulnerabilities

— Deals with domain-specific
challenges

— Able to verify small programs
* Tested on 99 programs

— Found 22 bugs

— Verified memory safety for 52
programs

Example Attack: WOOT 2012

MasterC ar_@i :

G412 7512 34l2| WG

INTUIT

GoPayment

[Frisby et al., 2012]

Example Attack: WOOT 2012

16-bit low power device C\(Jmmand
C firmware ‘T@\’
Low,level hardware interaction '\ﬁ\

Secret Key

5

[Frisby et al., 2012]

Embedded Systems: Lots of Attacks

INTERNET OF THINGS

Design How-To DILLON BERESFORD
Embedded systems next for hack SHEHLFEICY YRR ENIEY IR
attacks

During this presentation we will cover newly discovered Siemens Simatic S7-1200
Peter Clarke MO RATINGS PLC vulnerabilities. | plan to demonstrate how an attacker could impersonate the

LOGIN TC RATE
212602013 02:30 PM EST

Siemens Step 7 PLC communication protocol using some PROFINET-FU over 150-
TSAP and take control.

A Heart Device Is Found Vulnerable to Hacker Attacks

By BARMABY J. FEDER
Publizhed: March 12, 2008

Kelly Jackson Higgins December 27, 2011

1. Remotely starting a car via text message.

PINPADPWN Presented By

July 25

... Little Work on Detecting Vulnerabilities

Embedded Systems: Lots of Attacks

INTERNET OF THINGS

Design How-To

Embeddg Source code analysis is
attacks
Peter Clarks hEIprI 0n dESktOp

212612

Could be transitioned to
firmware

Juany i':-j

... Little Work on Detecting Vulnerabilities

Symbolic Execution

* Represents program
input as sets of
constraints

* Explores multiple feasible
paths for bugs

* Provide detailed trace to
l, vulnerability

X220

[X>0] X<0

Symbolic Execution

C source code * Represents program
input as sets of

\ 4 constraints

* Explores multiple feasible
I’} paths for bugs

VM bitcode * Provide detailed trace to
3 vulnerability

 KLEE

— Popular, mature tool

— Average > 90% line
coverage

— Finds memory safety
violations

¥

Error trace

KLEE: Performance on MSP430

Firmware
source code (C)

\ 4

Clang
(MSP430)

LLVM bitcode

16-bit KLEE

Error trace

Why MSP4307

— Popular, widely deployed
— Security applications

— Has clang support

KLEE ported to 16-bit

Evaluated 99 programs
— 12 TI Community

— 78 Github

— 8 USB protocol stack

— 1 Synthetic (cardreader)

Average instruction
coverage for MSP430 < 6%

— Most programs < 1%

Challenges of MSP430 Code

- Peripheral access with 1/O Ports

while (true) {
1f (P1IN)
len = PI1IN;
_BIS SR(GIE);

if (! P1IN)

strncpy (dst, src, len);

PORT_Z_ISR
PIDIR = 0x0;

10

Challenges of MSP430 Code

\SPA30° MCU

3

XAS
‘;EJSTRUMENTS

Peripheral access with 1/O Ports
Environment interaction via
implicit memory mapping

Challenge #1
Architecture

Diversity

while (true) {
1f (*0x20)
len = *0x20;
_BIS SR(GIE);

it (! *0x20)

strncpy (dst, src, 1len) ;

> 400 variants of MSP430

PORI_Z_ISR
*O0x22 = 0x0;

11

Challenges of MSP430 Code

value?

Challenge #1
Architecture

while (true) { Diversity
1f (*0x20)
len = *0x20;
_BIS SR(GIE);

1f (1x0x20)
strncpy (dst, src, 1len) ;

Challenge #2
PORT 2 ISR Peripheral

*0x22 = EXO; semantics

Challenges of MSP430 Code

Challenge #1
Architecture

while (true) { Diversity

1f (*0x20)
len = *0x20;
BIS SR(GIE);
1f (!'*0x20)
strncpy (dst, src, 1len) ;

Challenge #3
Interrupt-

driven
programs

Challenge #2
PORT 2 ISR Peripheral

*0x22 = 0x0; semantics

Firmware
Source Code

Clang
(MSP430)

LLVM Bitcode

Optimized
Symbolic
Execution Engine

« Chip Layout Spec
« Memory Spec
« Interrupt Spec

Handles over 400
variants of the MSP430

Bugfinding
— Memory safety (21)
— Peripheral misuse (1)

Verification (53/99)
Customizable

FIE on Firmware

Firmware

Source Code Challenge #1

Architecture Challenge #2
Diversity Peripheral
semantics

Clang

(MSP430)

LLVM Bitcode Challenge #3

Interrupt-
- Chip Layout Spec e
Optimized
Symbolic - Memory Spec programs
Execution Engine
- Interrupt Spec

verificatio

FIiE on Architecture Diversity

Variations in layout and capabilities
of the microcontroller

Memory size

Memory region types

Available interrupts

16

FIiE on Architecture Diversity

/Chip layout spec\

Memory size

Variations in layout and capabilities
of the microcontroller

Memory region types

Available interrupts —

_

layout 0x10000

range 0x1080 0x10bf flash

range 0x10cO O0x10ff flash

addr P1IN 0x20 1

— 1nterrupt PORTZ ISR check PORTZ

/

Domain-specific specification language
Flat text file for manual manipulation
Script support for msp430-gcc export

17

FIE on Memory

while (true) {
{ Chip Layout Spec J 1f (*0x20)
R 1

ddr P1IN 0x20 len = *0x20;
~BIS SR(GIE);

1f (!'*0x20)
4 Memory Library) strncpy (dst, src, len);
P1IN READ: }
2727
_) PORT 2 ISR
*0x22 = 0x0;

18

FIE on Memory

Assume adversary controls peripherals
Allow users to supply custom libraries

while (true) { 6
s 0,

Chip Layout Spec if (*0x20
addr P1IN 0x20 1 len = *0x20; “«
_BIS_SR(GIE); |
if (!*0x20) «—|~3

4 Memory Library) strncpy (dst, src, len);
P1IN READ: }
fresh symbolic()
_) PORT 2 ISR
*0x22 = 0x0;

19

FIE on Interrupts

Chip Layout Spec Adversary controls interrupts
interrupt PORT2 ISR check PORT2 Split state at every valid point

Interrupt Library

Check PORT2:
Interrupts On?

.

Port 2 Priority?

/

while (true){ X
1f (*0x20) X
len = *0x20;%
~BIS SR(GIE) ;X
1f ('*0x20)
strncpy (dst, src, len);

PORT 2 ISR
*0x22 = 0x0;

20

Challenges and Opportunities

Firmware

Source Code Challenge #1

Architecture Challenge #2
Diversity Peripheral
semantics

Clang

(MSP430)

LLVM Bitcode Challenge #3

Interrupt-
- Chip Layout Spec e
Optimized
Symbolic - Memory Spec programs
Execution Engine
- Interrupt Spec

verificatio

Challenges and Opportunities

Firmware
Source Code

Clang
(MSP430)

LLVM Bitcode

Optimized
Symbolic
Execution Engine

e \erification

— QOutside scope of
traditional symbolic
execution

» State space intractable

« e Key Insight

— Firmware state space
« much smaller
&

verificatio

FiE on Verification

Infinite program paths
Analysis stuck executing already-seen states
Prevents verification

while (true) {
1f (*0x20)
len = *0x20;
~BIS SR(GIE);
1f ('*0x20)
strncpy (dst, src, len);

PORT_Z_ISR
*O0x22 = 0x0;

23

FiE on Verification

* Log all execution states

* Pruning

— Detect redundant states and
terminate them

— Redundant states; redundant
successors

* Smudging
— replace frequently-changing
concrete memory with symbolic

— Complete
* May have FPs

FiE on Verification

* Log all execution states

* Pruning

— Detect redundant states and
terminate them

— Redundant states; redundant
SuUCCcessors
* Smudging
— replace frequently-changing

concrete memory with symbolic

— Complete
* May have FPs

More details in the paper

FIE on Firmware

Challenge #1 Challenge #3
Chip Layout Spec Architecture Interrupt-
Memory Spec SR driven

programs
Interrupt Spec Challenge #2

Peripheral
semantics

Optimized
Symbolic
Execution Engine

verificatio

Evaluation

* Amazon EC2

— Automated tests
(scripts available)

— 50 minute runs
e Test Versions:

e g

—_—>
; mazon
—_—>

— 16-bit KLEE
Corpus: .° baseline
12 TI Community — FiE | |
1 Synthetic (cardreader) * Symbolic + plugin
8 USB protocol stack — FIE + pruning

78 Github — FiE + pruning + smudging

27

Bugfinding Results

e 22 bugs across the
corpus (smudge)
— Verified manually

— 21 found in the
MSP430 USB
protocol stack

— 1 misuse of flash
memory

 Emailed developers

28

Coverage Results

Average % False

Coverage | Positives Veniticd

Baseline 5.9 92 0
Symbolic 71.1 0 5
Prune 74.4 0 35

Smudge 79.4 1 -

29

©c o o o
(R 4 = (v a]

Instruction Coverage (%)

=

High-Challenge Programs

[Conservative
[] Basic block

Jos]

sl

13 largest programs

* FiE does well for small
(but still usefull) programs

* For large programs,
verification out of reach

 Reduce interrupts fired

— Conservative: interrupts at
each instruction

— Relaxed: interrupts at each
basic block

30

* FiE breaks new ground
— Not the final word by far
* One pointin analysis
design space
— Dynamic testing
— Concolic execution

— Static analysis

* Language Design

31

Tkl

Summary

Initiated work for MSP430 automated
bugfinding

Modular, conservative symbolic execution

Supported verification and bugfinding

Download FiE
www.cs.wisc.edu/~davidson/fie

32

http://www.cs.wisc.edu/~davidson/fie

looP .

1oo§> .

Q: Smudging example

* While Pruning:

— Check unique values for
each memory object

— If above threshold,
replace with wildcard (*)

* Makes pruning easier

— Redundant states sooner

* Complete
J — May cause false positives

33

Q: Corpus Code Size

Q: Why didn’t you find more bugs?

* It's easy to get hobbyist
code

* The production code that
we do have indicates a
problem

ROAcQZ%TG — * The tractability of
BT TRy ooi‘-?'é‘.ﬁ'é n'?éw hobbyist code indicates
B (St i an opportunity for deeper
analysis

35

Q: What about Coverity?

e Commercial analysis tool
e Static Analysis

* Has an MSP430 target

— License forbids published
comparison

36

Q: What Does this Mean for KLEE?

 KLEE is a great tool
— The performance is great

— The code is great

* We use itin a way that it
wasn’t intended for

37

