
Tracking Rootkit Footprints with a
Practical Memory Analysis System

Weidong Cui (MSR)

Marcus Peinado (MSR)

Zhilei Xu (MIT)

Ellick Chan (UIUC)

21st USENIX Security Symposium

Kernel Rootkit Footprints

Memory changes a kernel
rootkit makes for

 Hijacking code execution

 Hiding its activities

Kernel Rootkit Hooking

 Directly modify code
 E.g., insert a JMP instruction
 Easy to check

 Manipulate a function pointer in a data structure
 Easy to check static data
 Dynamic data is the challenge!

 Hooking a single function pointer may be enough
for an attack

 We need to check all function pointers

Challenge: Identify all dynamic data to check all function pointers

Kernel Rootkit in Memory

 A needle in a haystack!

 A typical Windows 7
kernel has
 100+ loaded modules

 100K to 1M+ data objects

 100K+ function pointers

How to find all the data and function pointers?

Basic Memory Traversal

TypeA* GV TypeB* A1

UINT32 A2

TypeC* B1

UINT8* B2

TypeA TypeB

UINT32 C1

void *C2

TypeC

UINT32 A3

TypeD* A4 UINT32 D1

UINT32 D2

TypeD

• [SBCFI: Petroni07], [Gibraltar: Baliga08], [KOP: Carbone09]

• KOP uses static analysis to infer types for generic pointers

What if a Pointer is Invalid?

TypeA* GV TypeB* A1

UINT32 A2

TypeC* B1

UINT8* B2

TypeA TypeB

UINT32 C1

void *C2

TypeC

UINT32 A3

TypeD* A4 UINT32 D1

UINT32 D2

TypeD

Errors are propagated and accumulate!

KOP on 10 Real-World Crash Dumps

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

True suspicious
funcptrs found by KOP

True suspicious funcptrs
missed by KOP

False suspicious
funcptrs found by KOP

Pointer Uncertainty is Unavoidable

 Invalid pointers
 Uninitialized pointers

 Corrupted pointers

 Ambiguous pointers
 Pointers in unions

 Generic pointers with
multiple candidate types

We must handle pointer uncertainty effectively!

MAS: A Practical Memory Analysis System

 Accurate: find all rootkit footprints

 Robust: handle real-world snapshots

 Fast: finish in just minutes

How does MAS Handle Pointer Uncertainty?

 Identify data objects without following
pointers (as much as possible)

 Ignore pointers with ambiguous types

 Check all available constraints before
following a pointer

 Support error correction in memory
traversal

Fast and Precise Pointer Analysis

 Demand-driven

 Partially flow sensitive (SSA)

 Context-sensitive

 Field-sensitive

Identifying Data Objects by Pool Tags

 Pool tags are a feature of Windows
 Similar features available in Linux

 Many pool tags are associated with a unique data
type
 E.g., “Irp “ is for IRP

 Use static analysis to infer relationship between
pool tags and data types

FOO* f = (FOO*) ExAllocatePoolWithTag(NonPagedPool, sizeof(FOO), ‘DooF’);

Ignoring Ambiguous Pointers

 Resolving type ambiguities with heuristics is bound
to have errors

 Only follow pointers with unique types

Constraints for Data Objects

 Size constraint

 Pointer constraint

 Enum constraint

 Pool tag constraint

Type Constraint

TypeP *p

TypeQ *q TypeQ

TypeP

• The type layouts of two overlapped data objects
must match

What if they don’t match?

Error Correction

 If two overlapped data objects have type
mismatch
 If one object was found without following

pointers, keep it

 Otherwise, keep the larger object

 When removing an existing object
 Remove all the objects that are only reachable

from the removed object

Integrity Checking

 Code Integrity

 Function Pointer Integrity

 Visibility Integrity

Implementation

 Static analysis
 12K lines of C++ code

 Developed a PREfast plugin to extract information

 Memory traversal and integrity checking
 24K lines of C/C++ code

 Worked as a debugger extension for WinDbg

Real-World Data Sets

 11 Windows Vista SP1 crash dumps

 837 Window 7 crash dumps

 154,768 kernel malware samples

Accuracy

 For 10 Windows Vista SP1 crash dumps
 All suspicious function pointers found by MAS are true

function pointers

 All true suspicious function pointers found by KOP are
found by MAS

 For 837 Windows 7 crash dumps
 We verified that all but 24 out of 400K suspicious

function pointers are true function pointers

Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

MAS Runtime (s) Distribution over 837 Windows 7 Crash Dumps

Detecting Rootkits in Crash Dumps

 Cannot fully automate it because of third-party drivers
 Ignore suspicious function pointers to unknown modules

 Took one hour of manual effort

of Crash Dumps

Total 848

Only funcptrs to unknown modules 664

Anti-virus software 84

Rootkits 95

Corrupted 5

Malware Study

 191 unique function pointers

 31 different data structures

 NTOS kernel + 5 different modules

Malware Clustering

1

10

100

1000

10000

100000

1 51 101 151 201 251

Summary

 MAS is a practical memory analysis system for
detecting and analyzing kernel rootkits
 Handles pointer uncertainty effectively

 Applied MAS to 848 real-world crash dumps
 Found 95 of them have rootkits

 Large-scale study of 150K malware samples
 Hooked 191 unique functions pointers in 31 data

structures of 6 modules

