
Tracking Rootkit Footprints with a
Practical Memory Analysis System

Weidong Cui (MSR)

Marcus Peinado (MSR)

Zhilei Xu (MIT)

Ellick Chan (UIUC)

21st USENIX Security Symposium

Kernel Rootkit Footprints

Memory changes a kernel
rootkit makes for

 Hijacking code execution

 Hiding its activities

Kernel Rootkit Hooking

 Directly modify code
 E.g., insert a JMP instruction
 Easy to check

 Manipulate a function pointer in a data structure
 Easy to check static data
 Dynamic data is the challenge!

 Hooking a single function pointer may be enough
for an attack

 We need to check all function pointers

Challenge: Identify all dynamic data to check all function pointers

Kernel Rootkit in Memory

 A needle in a haystack!

 A typical Windows 7
kernel has
 100+ loaded modules

 100K to 1M+ data objects

 100K+ function pointers

How to find all the data and function pointers?

Basic Memory Traversal

TypeA* GV TypeB* A1

UINT32 A2

TypeC* B1

UINT8* B2

TypeA TypeB

UINT32 C1

void *C2

TypeC

UINT32 A3

TypeD* A4 UINT32 D1

UINT32 D2

TypeD

• [SBCFI: Petroni07], [Gibraltar: Baliga08], [KOP: Carbone09]

• KOP uses static analysis to infer types for generic pointers

What if a Pointer is Invalid?

TypeA* GV TypeB* A1

UINT32 A2

TypeC* B1

UINT8* B2

TypeA TypeB

UINT32 C1

void *C2

TypeC

UINT32 A3

TypeD* A4 UINT32 D1

UINT32 D2

TypeD

Errors are propagated and accumulate!

KOP on 10 Real-World Crash Dumps

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

True suspicious
funcptrs found by KOP

True suspicious funcptrs
missed by KOP

False suspicious
funcptrs found by KOP

Pointer Uncertainty is Unavoidable

 Invalid pointers
 Uninitialized pointers

 Corrupted pointers

 Ambiguous pointers
 Pointers in unions

 Generic pointers with
multiple candidate types

We must handle pointer uncertainty effectively!

MAS: A Practical Memory Analysis System

 Accurate: find all rootkit footprints

 Robust: handle real-world snapshots

 Fast: finish in just minutes

How does MAS Handle Pointer Uncertainty?

 Identify data objects without following
pointers (as much as possible)

 Ignore pointers with ambiguous types

 Check all available constraints before
following a pointer

 Support error correction in memory
traversal

Fast and Precise Pointer Analysis

 Demand-driven

 Partially flow sensitive (SSA)

 Context-sensitive

 Field-sensitive

Identifying Data Objects by Pool Tags

 Pool tags are a feature of Windows
 Similar features available in Linux

 Many pool tags are associated with a unique data
type
 E.g., “Irp “ is for IRP

 Use static analysis to infer relationship between
pool tags and data types

FOO* f = (FOO*) ExAllocatePoolWithTag(NonPagedPool, sizeof(FOO), ‘DooF’);

Ignoring Ambiguous Pointers

 Resolving type ambiguities with heuristics is bound
to have errors

 Only follow pointers with unique types

Constraints for Data Objects

 Size constraint

 Pointer constraint

 Enum constraint

 Pool tag constraint

Type Constraint

TypeP *p

TypeQ *q TypeQ

TypeP

• The type layouts of two overlapped data objects
must match

What if they don’t match?

Error Correction

 If two overlapped data objects have type
mismatch
 If one object was found without following

pointers, keep it

 Otherwise, keep the larger object

 When removing an existing object
 Remove all the objects that are only reachable

from the removed object

Integrity Checking

 Code Integrity

 Function Pointer Integrity

 Visibility Integrity

Implementation

 Static analysis
 12K lines of C++ code

 Developed a PREfast plugin to extract information

 Memory traversal and integrity checking
 24K lines of C/C++ code

 Worked as a debugger extension for WinDbg

Real-World Data Sets

 11 Windows Vista SP1 crash dumps

 837 Window 7 crash dumps

 154,768 kernel malware samples

Accuracy

 For 10 Windows Vista SP1 crash dumps
 All suspicious function pointers found by MAS are true

function pointers

 All true suspicious function pointers found by KOP are
found by MAS

 For 837 Windows 7 crash dumps
 We verified that all but 24 out of 400K suspicious

function pointers are true function pointers

Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

MAS Runtime (s) Distribution over 837 Windows 7 Crash Dumps

Detecting Rootkits in Crash Dumps

 Cannot fully automate it because of third-party drivers
 Ignore suspicious function pointers to unknown modules

 Took one hour of manual effort

of Crash Dumps

Total 848

Only funcptrs to unknown modules 664

Anti-virus software 84

Rootkits 95

Corrupted 5

Malware Study

 191 unique function pointers

 31 different data structures

 NTOS kernel + 5 different modules

Malware Clustering

1

10

100

1000

10000

100000

1 51 101 151 201 251

Summary

 MAS is a practical memory analysis system for
detecting and analyzing kernel rootkits
 Handles pointer uncertainty effectively

 Applied MAS to 848 real-world crash dumps
 Found 95 of them have rootkits

 Large-scale study of 150K malware samples
 Hooked 191 unique functions pointers in 31 data

structures of 6 modules

