7

Comparative Measurement of
Cache Configurations’ Impacts on
Cache Timing Side-Channel Attacks

Xiaodong Yu, Ya Xiao, Kirk W. Cameron, Danfeng (Daphne) Yao

Dept. of Computer Science, Virginia Tech



Special Thanks to

* the whole VarSys project team:

Thomas Lux, Bo Li, Jon Bernard, Chandler Jearls, L1 Xu, Tyler
Chang, Prof. Yili Hong, Prof. Layne Watson, Prof. Godmar Back,
and Prof. Margaret Ellis

Xiaodong Yu 08/12/2019 @ VirginiaTECh

USENIX CSET'19 Invent the Future



Cache Side-Channel Attacks are Real Dangers

Various side-channels
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Both attacks break the application
1solations by leveraging the cache
side-channel as well as other
instruction processing vulnerabilities
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Targeted Problem

How do cache configurations influence the performance of cache side-channel attacks?
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Cache Configurations’ Impact on the Time-Driven Side-Channel Attacks

Bernstein’s Attack on AES

Time-driven attacks solely rely on the time
differences between cache-hits and cache-
misses; more cache-misses = easier attacks

(b) Attacking phase
Secret Key

l

(a) Profiling phase i l
i [2’\’ encryptions ] i

Known Key

l

on victim server on victim server

l

Reference
time model

Cache configurations can impact the time-
driven attacks; but it’s unclear HOW

Attack/ng
time data

// JOAIOS WOIA uo saseyd ouruQ

i [2’\’ encryptions ] i

Correlating the reference
and attacking data

(c) correlating phase . . e .
/R _— eld key » There is no quantifiable metric for the attacks
search space | » There is no configurable caches in
R | P — j commodity CPUs

Brute-force search

i Two difficulties in comparative measurements:

(d) searching phase l
Recovered Key

< wd)sAs [eoo] uo saseyd suIO

Xiaodong Yu 08/12/2019 @ VirginiaTECh

USENIX CSET'19 Invent the Future



Our Design: A Quantifiable Metric for Time-driven Cache Attacks

The conventional success-fail binary metric cannot support the comparative measurements

Equivalent Key Length (EKL): a normalized metric to represent the key search space

713:0 log, vy
8n

EKL=1-—
EKLe[0,1], n1s the length of the key (16-bytes in our measurements), v, 1s the number of
candidates for the k-th key byte, where k€ [0,n-1]

EKL=0 -» original search space; EKL=1 > fully revealed secret key
It 1s unnecessary to achieve EKL=1; Practically, EKLL=0.8 can achieve a good balance of
the measurement cost and the brute-force search cost

The success rate of the attacks: EKL/number of encryptions q
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Our Design: use GEMS5 to Emulate the Configurable Caches

GEMDS is a modular platform that has been widely used in computer architecture research
community; we use GEMS to cycle-accurately emulate the systems with configurable cache

Private Cache Associativity 1. Private Cache Size (PCS): 2KB, 4KB, 8KB,
16KB, 32KB

. . 2. Private Cache Associativity (PCA): 2-way,
m Cacheline Size 4-way, 8-way, 16-way, 32-way
' N 3. Shared Cache Size (SCS): 2MB, 4MB, 8MB,
16MB, 32MB

Private Cache Size
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4 Replacement

Policy 4. Shared Cache Associativity (SCA) : 2-way,

Two4level cache hierarchyﬂ 4-Way, 8—Way, 16—Way, 32-Way

¢
/ Clusivity 5. Cacheline Size (CLS): 32Bytes, 648, 128B
6. Replacement Policy (RP): RANDOM, FIFO,
Shared Cache Size LRU, LFU
Shared Cache Associativity 7. Cache Clusivity (CC): inclusive, exclusive d
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Measurement Results: Private Cache Size (PCS)
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Theoretical: larger PCS leads to more difficult attacks; after 4kB PCS, the attacks

are 1mpossible

252

X-axis: the number of encryptions that
the attacker conducted
Y-axis: the equivalent key length (EKL)

Fact: after 4kB PCS, although much harder, the attacks still can succeed

Reason: AES computation itself and the system operations can kick some
lookup table entries out of the private cache
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Measurement Results: Private Cache Associativity (PCA)
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Theoretical: larger PCA leads to more difficult attacks
Fact: after 8-way PCA, the attacks get significant harder to succeed

Reason: after 8-way PCA, loaded entry mostly can find an appropriate place in
the set without flushing the next-read data
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Measurement Results: Cache Clusivity (CC)

Clusivity describes the consistency policy 1.0 S T
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Theoretical: inclusive policy results in less overall cache-miss penalties, hence
harder attacks

Fact: exclusive policy leads to harder attacks
Reason: private cache’s cache-misses dominate the AES computation time
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Measurement Results: SCS and SCA w/ and w/o Neighbor Processes
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EKL

Cacheline Size (CLS)
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Fact: insignificant impact

Reason: AES computation has
good spatial locality
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Measurement Results: CLS and RP

Replacement Policy (RP)
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Fact: Random policy results in easiest attacks

Reason: AES computation has good spatial
locality, but Random leverages no locality
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Suggestions to the Attackers, Defenders, and System Designers

Takeaways:

a) Private cache configuration is the key

b) Shared cache configuration is trivial; adding the neighbor processes can increase
the success rates;

c) Replacement policies and clusivity also can influence the attacks’ success rates.

To attackers:
Binding a noise process with the same CPU of encryptions = easier attacks

To defenders:
a) Setting the private cache at the inflection points = optimal cost-efficiency balance
b) Using lock-into-cache instruction = more difficult attacks

To system designers:
Heterogenous replacement policy and clusivity = good balance between system
performance and security
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Summary of Our Comparative Measurement Work

» We made the cache attack performances comparable
» We use the GEMS5 platform to emulate the configurable caches
» We systematically each cache parameter’s influences: the private cache is the key;

the shared cache’s impacts are trivial; The replacement policies and cache
clusivity also have impacts
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Backup Slides
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CPU Cache Model is a Two-Level Hierarchy

Process 0 Process 1

CPU Core 0O
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____________________________________ A

Two types of cache
attacks:

> Access-driven attacks
> Time-driven attacks
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Access-driven Attacks are Lightweight but Require Access Privileges
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The access-driven attacks are popular:
» It is more accurate
» It requires less computations
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They require access

privileges

» Revoking the privilege
using Intel’s Cache
Allocation Technology
(CAT) can prevent the
attacks [Liu HPCA’16]
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Conducting Comparative Measurements

Every GEMS instances have the same system settings but different

cache configurations

Execute the Bernstein’s attack on AES on

each GEMYS instances

Use the OpenSSL’s AES implementation;

OpenSSL precomputes the results of

each AES step and stores them as a 4KB

lookup table
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Host System

CPU Intel(R) Xeon(R) E5-2620
main memory 192 GB RDIMM

GEMS Platform

CPU core # 2 cores (3 GHz)

main memory 4GB

CPU cache two-level configurable
operating system Ubuntu 16.04.1 LTS
OpenSSL version 1.0.2 LTS
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Limitations and Future Research Directions

Limitations:
a) Unclear whether the measurement 1s compatible with other cache side-channel attacks

b) The measurement does not count the effects of some modern hardware technologies

Future directions:

a) Study whether this measurement’s approach, findings, and conclusions transferable to
other cache side-channel attacks

b) Study whether the RISC-based embedded systems’ cache configurations have the same
or similar impacts

c) Study how accurate this emulation-based measurement is; try to exploit the findings to
build a prediction model for the cache timing attack vulnerability of unseen systems q
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