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Cache Side-Channel Attacks are Real Dangers

Secret Key

Cipher AlgorithmPlaintext Ciphertext

Various side-channels

Power Consumption Electromagnetic 
Radiation

Execution Time

Cache Attacks:
Guess the secret keys 
by exploiting the 
time differences 
between the cache-
hits and cache-misses

Acoustic Emission

Cache Side-Channel Attacks are Practical and Severe

Both attacks break the application 
isolations by leveraging the cache 
side-channel as well as other 
instruction processing vulnerabilities 3
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Targeted Problem

How do cache configurations influence the performance of cache side-channel attacks?
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Cache Configurations’ Impact on the Time-Driven Side-Channel Attacks

2N encryptions 
on victim server

2N encryptions 
on victim server

Reference 
time model

Attacking 
time data

Correlating the reference 
and attacking data

Reduced key 
search space

Brute-force search

Known Key Secret Key

Recovered Key

(a) Profiling phase (b) Attacking phase

(c) correlating phase

(d) searching phase

O
nline phases on victim

 server
O

ffline phases on local system

Bernstein’s Attack on AES
Time-driven attacks solely rely on the time 
differences between cache-hits and cache-
misses; more cache-misses à easier attacks

Cache configurations can impact the time-
driven attacks; but it’s unclear HOW

Two difficulties in comparative measurements:
Ø There is no quantifiable metric for the attacks
Ø There is no configurable caches in 

commodity CPUs

5
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Our Design: A Quantifiable Metric for Time-driven Cache Attacks
The conventional success-fail binary metric cannot support the comparative measurements

Equivalent Key Length (EKL): a normalized metric to represent the key search space 

!"# = 1 − ∑()*
+ log/ 0(

82
EKL∊ [0,1], n is the length of the key (16-bytes in our measurements),  vk is the number of 
candidates for the k-th key byte, where k∊ [0,n-1]

EKL=0 à original search space; EKL=1 à fully revealed secret key
It is unnecessary to achieve EKL=1; Practically, EKL=0.8 can achieve a good balance of 
the measurement cost and the brute-force search cost

The success rate of the attacks: EKL/number of encryptions 6
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Our Design: use GEM5 to Emulate the Configurable Caches
GEM5 is a modular platform that has been widely used in computer architecture research 
community; we use GEM5 to cycle-accurately emulate the systems with configurable cache

Private Cache Size Private Cache Associativity

Shared Cache Associativity

Shared Cache Size

Cacheline Size

Replacement 
Policy

Clusivity

1. Private Cache Size (PCS): 2KB, 4KB, 8KB, 
16KB, 32KB

2. Private Cache Associativity (PCA): 2-way, 
4-way, 8-way, 16-way, 32-way

3. Shared Cache Size (SCS): 2MB, 4MB, 8MB, 
16MB, 32MB

4. Shared Cache Associativity (SCA) : 2-way, 
4-way, 8-way, 16-way, 32-way

5. Cacheline Size (CLS): 32Bytes, 64B, 128B
6. Replacement Policy (RP): RANDOM, FIFO, 
LRU, LFU

7. Cache Clusivity (CC): inclusive, exclusive 7
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Measurement Results: Private Cache Size (PCS)

8

X-axis: the number of encryptions that 
the attacker conducted
Y-axis: the equivalent key length (EKL)

Theoretical: larger PCS leads to more difficult attacks; after 4kB PCS, the attacks 
are impossible
Fact: after 4kB PCS, although much harder, the attacks still can succeed
Reason: AES computation itself and the system operations can kick some 
lookup table entries out of the private cache
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Measurement Results: Private Cache Associativity (PCA)

Basic cache unit is not Byte, but the cacheline

cacheline cacheline cacheline cacheline

cacheline cacheline cacheline cacheline

cacheline cacheline cacheline cacheline

cacheline cacheline cacheline cacheline

set
2-way4-way

loaded data

Theoretical: larger PCA leads to more difficult attacks
Fact: after 8-way PCA, the attacks get significant harder to succeed
Reason: after 8-way PCA, loaded entry mostly can find an appropriate place in 
the set without flushing the next-read data
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Measurement Results: Cache Clusivity (CC)

10

Clusivity describes the consistency policy 
between private and shared cache

shared 
cache

private 
cache inclusiveexclusive

Theoretical: inclusive policy results in less overall cache-miss penalties, hence 
harder attacks
Fact: exclusive policy leads to harder attacks 
Reason: private cache’s cache-misses dominate the AES computation time
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Measurement Results: SCS and SCA w/ and w/o Neighbor Processes
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Measurement Results: CLS and RP

12

Cacheline Size (CLS) Replacement Policy (RP)

Fact: insignificant impact
Reason: AES computation has 
good spatial locality

Fact: Random policy results in easiest attacks
Reason: AES computation has good spatial 
locality, but Random leverages no locality
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Suggestions to the Attackers, Defenders, and System Designers 
Takeaways: 
a) Private cache configuration is the key
b) Shared cache configuration is trivial; adding the neighbor processes can increase 

the success rates; 
c) Replacement policies and clusivity also can influence the attacks’ success rates.

To attackers: 
Binding a noise process with the same CPU of encryptions à easier attacks
To defenders: 
a) Setting the private cache at the inflection points à optimal cost-efficiency balance
b) Using lock-into-cache instruction à more difficult attacks
To system designers: 
Heterogenous replacement policy and clusivity à good balance between system 
performance and security 13
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Summary of Our Comparative Measurement Work

ØWe made the cache attack performances comparable

ØWe use the GEM5 platform to emulate the configurable caches

ØWe systematically each cache parameter’s influences: the private cache is the key; 
the shared cache’s impacts are trivial; The replacement policies and cache 
clusivity also have impacts

14
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Backup Slides
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CPU Cache Model is a Two-Level Hierarchy

Process 0 Process 1

ü

û

ü
üü
û

Two types of cache 
attacks:
Ø Access-driven attacks
Ø Time-driven attacks

16



Xiaodong Yu 08/12/2019
USENIX CSET’19

Access-driven Attacks are Lightweight but Require Access Privileges

The access-driven attacks are popular:
Ø It is more accurate
Ø It requires less computations

attacker victim
FLUSHAccess

Fast
RELOAD
NO
RELOAD

Slow

They require access 
privileges
Ø Revoking the privilege 

using Intel’s Cache 
Allocation Technology 
(CAT) can prevent the 
attacks [Liu HPCA’16]

FLUSH+RELOAD 
Attack

û

17
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Conducting Comparative Measurements

Every GEM5 instances have the same system settings but different 
cache configurations

Execute the Bernstein’s attack on AES on 
each GEM5 instances 

Use the OpenSSL’s AES implementation;  
OpenSSL precomputes the results of 
each AES step and stores them as a 4KB 
lookup table 

18
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Limitations and Future Research Directions
Limitations: 
a) Unclear whether the measurement is compatible with other cache side-channel attacks
b) The measurement does not count the effects of some modern hardware technologies

Future directions: 
a) Study whether this measurement’s approach, findings, and conclusions transferable to 

other cache side-channel attacks
b) Study whether the RISC-based embedded systems’ cache configurations have the same 

or similar impacts
c) Study how accurate this emulation-based measurement is; try to exploit the findings to 

build a prediction model for the cache timing attack vulnerability of unseen systems
19


