CAERUS:

Chronoscopic Assessment Engine for Recovering Undocumented Specifications

Adam Seitz,¹ Adam Satar, ¹ Brian Burke, ¹ Lok Yan,² Zachary Estrada¹ ¹ Rose-Hulman Institute of Technology, Terre Haute, IN USA ²Air Force Research Laboratory, Rome, NY USA

Think Fortran, assembly language programming is boring and useless? Tell that to the NASA Voyager team

Ancient code jocks needed to keep probe alive

By Shaun Nichols in San Francisco 31 Oct 2015 at 12:03 133 🖵

Legacy IT Systems Pose an Obstacle to Cybersecurity Best Practices, GAO Head Says

NEWS	EMERGING TECH	CYBERSECURITY	Feb 15, 2017 2:48 pm
SHARE THIS STORY			У f in 🖾 🚄 🛨

Undocumented Specification: Toy Example

We want to automate the task of finding timing sensitivities

Goal: a tool for uncovering timing sensitivities

- Automated: run with minimal user interaction
- Versatile: applicable to different target devices
- Extensible: system capabilities can be augmented

Chronoscopic Assessment Engine for Recovering Undocumented Specifications

Example Test Routine: Button Duration

Example Test Routine: Button Duration

Example Test Routine: Button Duration

Duration (ms)	Mean	StdDev	Min/Max
1	1.005	2.985×10^{-3}	1.001/1.007
7	7.000	6.569×10^{-3}	6.993/7.055
34	34.00	8.413×10^{-3}	33.97/34.01
1 - HS	1.026	0	1.026/1.026
7 - HS	7.024	0	7.024/7.024
34 - HS	34.04	1.194×10^{-4}	34.02/34.88

• HS = High Speed crystal oscillator (precise)

Current & Future Work

Security Applications: Fault Injection Attacks

- CAERUS as an embedded device fuzzer
- Clock glitching (e.g., instruction skipping)
- CAERUS is useful for tasks such as finding the right clock cycle, etc...

Going Forward

- Released as open-source under Mozilla Public License
- Stream-lining installation, set-up
- Currently have library support for RS232, looking to add CAN, J1939
- Analog to test other attacks (e.g., brownout, reset)
- Combine peripheral devices

Summary

- Legacy systems & timing sensitivity
- CAERUS architecture
- Minimum button duration example
- Security applications
- Source available on github: https://github.com/caerus-timing

