
Automated Attack Discovery in 
Data Plane Systems

Qiao Kang, Jiarong Xing, Ang Chen
Rice University

1



• A7acks to emerging “data plane systems”
• Network data planes are performing more funcCons today
• Data plane systems: Enabled by “programmable data planes”
• A general class of a7acks to many of them

Motivation: A new class of attacks

2

Link failure 
detector

Load 
balancer

Network policy 
enforcement

Covert channel 
miCgaCon



New trend: Programmable data planes

• TradiConal data planes: Fixed for rouCng
• Programmable data planes: Reconfigurable pipelines 
• Using high-level languages like P4
• Support sophisCcated operaCons like arithmeCc

3

Ingress {
// ACL
if (ACL[pkt] != Allow) 
drop();

// Rou/ng
forward_to_port();

// Traffic Engineering
dst = least_uCl_link()

}



Data plane systems: High performance

4

• Data plane systems have high performance.
• Example: Link failure detection

• Border Gateway Protocol (BGP): Periodic probing messages  --> O(minutes)
• Blink [NSDI’19]: Monitors data traffic                                          --> O(seconds)

Packets Outputs~ Tbps traffic

Link failure 
detector

Load 
balancer

Network policy 
enforcement

Covert channel 
miCgaCon



Open direction: Security risks

5

• Data plane systems react to network packets
• Anyone can inject malicious packets to cause problematic outputs

Link failure 
detector

Load 
balancer

Network policy 
enforcement

Covert channel 
mitigation

Malicious
packets

Problematic
outputs



Example #1: AEacking a load balancer 

6

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

• Expected behavior: Evenly splitting traffic
• Malicious traffic:  TCP source port numbers = 1,3,5,7…
• Flipped behavior: Load imbalance

Receiver1

Receiver2

0

1
Load balancer

Flipped behavior

Path 0 Path 1

100%

0%

Expected behavior

Path 0 Path 1

50% 50%



Example #2: Attacking Blink

7

// monitor TCP retrans
If (retrans > N)
Reroute()

Else
NormalForward()

• Expected behavior: Only rerouCng when link fails (very rare)
• Malicious traffic: Persistent TCP retransmissions
• Flipped behavior: Persistent re-rouCng and rouCng chaos

Destination
(e.g., Google)

Blink

NormalForward

Reroute
Expected behavior

Path 0 Path 1

99.9%

0.01%

Flipped behavior

Path 0 Path 1

75%

25%



A general class of attacks

8

Expected
behavior

“Flipped”
behavior

Link failure 
detector

Load 
balancer

Network policy 
enforcement

Covert channel 
miCgaCon

• Applies to many data plane systems!
• Different systems are vulnerable to different malicious patterns

Malicious traffic paDerns



Research question

9

Given a data plane system, can we discover all 
malicious traffic patterns and synthesize defenses 
in an automated manner?



• A 3-step approach:
• ① Establish expected behaviors
• ② Generate a7acks to flip the expected behaviors
• ③ Synthesize runCme monitors

Our Approach

10

Automated

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

If (TCP.sport % 2)                 
Monitor1()
Forward (0)

Else
Monitor2()
Forward (1)

Path 0 Path 1

100%

0%
Path 0 Path 1

50% 50%

① ② ③



Outline

• MoCvaCon:
• A new class of a7acks to data plane systems

• Our system: Automated a7ack discovery and defense synthesis
• System overview
• Challenge #1: Establish expected behaviors
• Challenge #2: IdenCfying equivalent classes 
• Challenge #3: Handling stateful programs

• Preliminary results
• Ongoing work and Conclusion

11



Outline

• Motivation:
• A new class of attacks to data plane systems

• Our system: Automated attack discovery and defense synthesis
• System overview
• Challenge #1: Establish expected behaviors
• Challenge #2: Identifying equivalent classes 
• Challenge #3: Handling stateful programs

• Preliminary results
• Ongoing work and Conclusion

12



Challenge #1: Establishing expected behaviors

• Problem: How to quanCfy the expected behaviors?
• Naïve soluCon: Feed random traffic traces and observe its outputs
• Might not be comprehensive

• Proposed soluCon: ProbabilisCc Symbolic ExecuCon (PSE)
• An advanced version of Symbolic ExecuCon 13

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

Path 0 Path 1

50% 50%



Probabilistic Symbolic Execution

• ProbabilisCc Symbolic ExecuCon (PSE)
• Explore execuCon paths with per-path probabiliCes
• Model CounCng: “number of soluCons”
• Packet headers: Uniform distribuCon

If

Forward (1)

Entry:

Forward (0)

Else

Pr(If)=0.5 Pr(Else)=0.5

100%

50% 50%

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

14

Path 0 Path 1

50% 50%



Challenge #2: Identifying Equivalence Classes 

• Problem: Number of paths might be very large
• Hard to understand the expected behaviors.

• Proposed SoluCon: Equivalence Classes (ECs)
• EC = a group of “equivalent” paths

Pr(NormalFowarding)=0.9 Pr(ReRouting)=0.1

Per-EC
probabilities

P1
0.1

P2
0.02

P3
0.15

P4
0.3

P5
0.03

P6
0.07

Per-path
probabiliCes

15



Challenge #3: Handling stateful programs

• Problem: Data plane systems can be stateful
• Need a sequence of N packets to trigger a certain EC (e.g., Blink)

• Naïve solution: Explore all possible paths for N packets
• Poor scalability

• Proposed solution: Directed Symbolic Execution (DSE)
• Heuristic search: Prioritize the “closest” path 16

Packet 1 Packet 2 ...... EC1EC1 EC2

50% 50%

100%

0%

EC1 EC2

EC1Packet

TCP.sport % 1 == 0

(x != 1 & ^(z > c)) & (y + z <= 3 ) & ((!x) ^ (y <= 0)) ...



Outline

• MoCvaCon:
• A new class of a7acks to data plane systems

• Our system: Automated a7ack discovery and defense synthesis
• System overview
• Challenge #1: Establish expected behaviors
• Challenge #2: IdenCfying equivalent classes 
• Challenge #3: Handling stateful programs

• Preliminary results
• Ongoing work and Conclusion

17



Setup

18

• Prototype implementaCon
• Symbolic execuCon engine: P4pktgen [SOSR’18]
• Model Counter: Python constraint library

• Experimental setup
• P4 load balancer
• Mininet simulator: 1 Bmv2 P4 switch + 3 hosts

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

Receiver1

Receiver2

0

1

Load balancerSender



Generated aEack and defense

19

EC 1
if (sport%2)

EC 2
else

• Generated a7ack:  Odd TCP source port numbers 
• Generated defense: Per-EC packet counters + periodic tests

Counter1 ++

Counter2 ++

KS_test(Counter1, Counter2)

Receiver1

Receiver2

0

1

Load balancer
Sender

50% 50%

EC1 EC1

100

0%

EC1 EC1



Link load results

• Normal traffic: 0~15s
• Attack starts at 15s
• Attack detected by the “patched” program

20

Alarm raised!



Ongoing work
• How to handle input packets that follow non-uniform distributions?
• ”Distribution-aware” model counting

• How to group execution paths to ECs?
• Too fined-grained: too many ECs
• Too coarse-grained: lose useful information

• How to deal with switch resource constraints?
• Adding monitors consumes switch resources
• Compress monitors using sketches

21



Conclusion

• MoCvaCon:
• Data plane systems are emerging
• Vulnerable to a new class of a7acks

• Our system: Automated aDack discovery
• 1) Obtain expected behaviors
• 2) Negate expected behaviors
• 3) Synthesis runCme monitors

• IniCal results:
• ✔ A7ack a simple 2-way load balancer
• ✔ Detected by runCme monitors

Thank you! 22


