7o RICE

Automated Attack Discovery in
Data Plane Systems

Qiao Kang, Jiarong Xing, Ang Chen
Rice University

Motivation: A new class of attacks

Covert channel
mitigation

Network policy
enforcement

 Attacks to emerging “data plane systems”
* Network data planes are performing more functions today
e Data plane systems: Enabled by “programmable data planes”
* A general class of attacks to many of them

New trend: Programmable data planes

Programmable

Parser

Ingress {
ﬁ e bus ﬁ Programmable // ACL
Deparser if (ACL[pkt] != Allow)

drop();

// Routing
forward_to_port();

// Traffic Engineering
dst = least_util_link()

* Traditional data planes: Fixed for routing

* Programmable data planes: Reconfigurable pipelines
* Using high-level languages like P4
* Support sophisticated operations like arithmetic

Data plane systems: High performance

Load Link failure JNetwork policy Covert channel
balancer detector enforcement mitigation

Programmable
Deparser

3

* Data plane systems have high performance.

* Example: Link failure detection

* Border Gateway Protocol (BGP): Periodic probing messages --> O(minutes)
e Blink [NSDI’19]: Monitors data traffic --> O(seconds) 4

Open direction: Security risks

Load Link failure Network policy Covert channel
balancer detector enforcement mitigation

Programmable
Parser Deparser

i o) Malicious
\ packets

Problematic
outputs

* Data plane systems react to network packets
* Anyone can inject malicious packets to cause problematic outputs

Example #1: Attacking a load balancer

Expected behavior Flipped behavior

100%

If (TCP.sport % 2) 0/' Ei 50% 50%
Forward (0) ,v Receiverl
Else O

Forward (1) Load balance\ Ei
Path O Path 1 Path O Path 1

Receiver2

* Expected behavior: Evenly splitting traffic
* Malicious traffic: TCP source port numbers =1,3,5,7...
* Flipped behavior: Load imbalance 6

Example #2: Attacking Blink

Expected behavior Flipped behavior

Reroute
(o)
99.9% 759%

// monitor TCP retrans

If (retrans > N) NormalForward
Reroute() 25%
e 0.01% .
NormalForward()
Destination Path O Path 1 Path O Path 1
(e.g., Google)

* Expected behavior: Only rerouting when link fails (very rare)
* Malicious traffic: Persistent TCP retransmissions
* Flipped behavior: Persistent re-routing and routing chaos 7

A general class of attacks

Load Link failure ~ Network policy Covert channel
balancer detector enforcement mitigation

Malicious traffic patterns

Expected N S
behavior

“Flipped”
behavior

* Different systems are vulnerable to different malicious patterns

* Applies to many data plane systems!

Research question

Given a data plane system, can we discover all
malicious traffic patterns and synthesize defenses
in an automated manner?

Our Approach

100%

If (TCP.sport % 2) N

9 Monitoril
If (TCP.sport % 2) Forward (0())
Forward (0) Else
Else i
Forward (1) Monitor2()

0% Forward (1)
PathO Pathl

Path O Path 1

* A 3-step approach:
- (D Establish expected behaviors ATErAE
- () Generate attacks to flip the expected behaviors
« (3) Synthesize runtime monitors

10

Outline

* Motivation:
* A new class of attacks to data plane systems

e Our system: Automated attack discovery and defense synthesis
* System overview
* Challenge #1: Establish expected behaviors
* Challenge #2: Identifying equivalent classes
e Challenge #3: Handling stateful programs

* Preliminary results
* Ongoing work and Conclusion

11

Outline

* Motivation:
* A new class of attacks to data plane systems

e Our system: Automated attack discovery and defense synthesis
* System overview
* Challenge #1: Establish expected behaviors
* Challenge #2: Identifying equivalent classes
e Challenge #3: Handling stateful programs

* Preliminary results
* Ongoing work and Conclusion

12

Challenge #1: Establishing expected behaviors

50% 50%

If (TCP.sport % 2)
Forward (0)
Else

PathO Path1

* Problem: How to quantify the expected behaviors?

* Naive solution: Feed random traffic traces and observe its outputs
* Might not be comprehensive

* Proposed solution: Probabilistic Symbolic Execution (PSE)
* An advanced version of Symbolic Execution 13

Probabilistic Symbolic Execution

Entry:

100%
50% 50%

If (TCP.sport % 2)
Forward (0) If Else

Else E> E>
Forward (1) 50% 50%

Forwagd (0) Forwdfd (1) PathO Path1
Pr(If)=0.5 Pr(Else)=0.5

* Probabilistic Symbolic Execution (PSE)
* Explore execution paths with per-path probabilities
* Model Counting: “number of solutions”
e Packet headers: Uniform distribution 14

Challenge #2: Identifying Equivalence Classes

P1 P2 P3 P4
0.1 .02 0.15 0.3
Per-path
probabilities
‘ 1
|
Pr(NormalFowarding)=0.9 Pr(

* Problem: Number of paths might be very large
* Hard to understand the expected behaviors.

* Proposed Solution: Equivalence Classes (ECs)
* EC = a group of “equivalent” paths

Per-EC
probabilities

15

Challenge #3: Handling stateful programs

100% TCP.sport % 1 ==

50% 50% T »

I : 0% (x1=1&Mz>c)) & (y+z<=3)&((!x) *(y<=0)) ...
EC2 EC1

EC1
1 - <o OO D

* Problem: Data plane systems can be stateful
* Need a sequence of N packets to trigger a certain EC (e.g., Blink)

* Naive solution: Explore all possible paths for N packets
e Poor scalability

* Proposed solution: Directed Symbolic Execution (DSE)
* Heuristic search: Prioritize the “closest” path 16

Outline

* Motivation:
* A new class of attacks to data plane systems

e Our system: Automated attack discovery and defense synthesis
* System overview
* Challenge #1: Establish expected behaviors
* Challenge #2: Identifying equivalent classes
e Challenge #3: Handling stateful programs

* Preliminary results
* Ongoing work and Conclusion

17

Setup

n\ = V L:H
If (TCP.sport % 2) Fﬂ — | 1 Receiverl
Forward (0) O - Fﬂ

Else Load balancer -
Sender

Receiver2

* Prototype implementation
* Symbolic execution engine: P4pktgen [SOSR’18]
 Model Counter: Python constraint library

* Experimental setup
P4 |load balancer
e Mininet simulator: 1 Bmv2 P4 switch + 3 hosts

Generated attack and defense

EC1
Fi if (spor‘t72) 50% 50%
o=

Receiverl

Load balancer\
Sender

Receiver2

e Generated attack: Odd TCP source port numbers
* Generated defense: Per-EC packet counters + periodic tests

19

Link load results

Alarm raised!

25

20

Link load

15T

10T

e Normal traffic: 0~15s
e Attack starts at 15s
e Attack detected by the

0 5 10 15 20 25 30

Time

“patched” program

20

Ongoing work

* How to handle input packets that follow non-uniform distributions?
* “"Distribution-aware” model counting

* How to group execution paths to ECs?
* Too fined-grained: too many ECs
* Too coarse-grained: lose useful information

* How to deal with switch resource constraints?
* Adding monitors consumes switch resources
* Compress monitors using sketches

21

Conclusion

 Motivation:
* Data plane systems are emerging
* Vulnerable to a new class of attacks

* Our system: Automated attack discovery
e 1) Obtain expected behaviors
* 2) Negate expected behaviors
* 3) Synthesis runtime monitors

* Initial results:
 V/ Attack a simple 2-way load balancer
« / Detected by runtime monitors

Thank you!

22

