
Automated Attack Discovery in 
Data Plane Systems

Qiao Kang, Jiarong Xing, Ang Chen
Rice University

1



• A7acks to emerging “data plane systems”
• Network data planes are performing more funcCons today
• Data plane systems: Enabled by “programmable data planes”
• A general class of a7acks to many of them

Motivation: A new class of attacks
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New trend: Programmable data planes

• TradiConal data planes: Fixed for rouCng
• Programmable data planes: Reconfigurable pipelines 
• Using high-level languages like P4
• Support sophisCcated operaCons like arithmeCc
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Ingress {
// ACL
if (ACL[pkt] != Allow) 
drop();

// Rou/ng
forward_to_port();

// Traffic Engineering
dst = least_uCl_link()

}



Data plane systems: High performance
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• Data plane systems have high performance.
• Example: Link failure detection

• Border Gateway Protocol (BGP): Periodic probing messages  --> O(minutes)
• Blink [NSDI’19]: Monitors data traffic                                          --> O(seconds)

Packets Outputs~ Tbps traffic
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Open direction: Security risks
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• Data plane systems react to network packets
• Anyone can inject malicious packets to cause problematic outputs
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Example #1: AEacking a load balancer 
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If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

• Expected behavior: Evenly splitting traffic
• Malicious traffic:  TCP source port numbers = 1,3,5,7…
• Flipped behavior: Load imbalance
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Example #2: Attacking Blink
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// monitor TCP retrans
If (retrans > N)
Reroute()

Else
NormalForward()

• Expected behavior: Only rerouCng when link fails (very rare)
• Malicious traffic: Persistent TCP retransmissions
• Flipped behavior: Persistent re-rouCng and rouCng chaos
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A general class of attacks
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• Applies to many data plane systems!
• Different systems are vulnerable to different malicious patterns

Malicious traffic paDerns



Research question
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Given a data plane system, can we discover all 
malicious traffic patterns and synthesize defenses 
in an automated manner?



• A 3-step approach:
• ① Establish expected behaviors
• ② Generate a7acks to flip the expected behaviors
• ③ Synthesize runCme monitors

Our Approach
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Automated

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)

If (TCP.sport % 2)                 
Monitor1()
Forward (0)

Else
Monitor2()
Forward (1)
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Outline

• MoCvaCon:
• A new class of a7acks to data plane systems

• Our system: Automated a7ack discovery and defense synthesis
• System overview
• Challenge #1: Establish expected behaviors
• Challenge #2: IdenCfying equivalent classes 
• Challenge #3: Handling stateful programs

• Preliminary results
• Ongoing work and Conclusion
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Challenge #1: Establishing expected behaviors

• Problem: How to quanCfy the expected behaviors?
• Naïve soluCon: Feed random traffic traces and observe its outputs
• Might not be comprehensive

• Proposed soluCon: ProbabilisCc Symbolic ExecuCon (PSE)
• An advanced version of Symbolic ExecuCon 13
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Probabilistic Symbolic Execution

• ProbabilisCc Symbolic ExecuCon (PSE)
• Explore execuCon paths with per-path probabiliCes
• Model CounCng: “number of soluCons”
• Packet headers: Uniform distribuCon

If

Forward (1)

Entry:

Forward (0)

Else
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Else
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Challenge #2: Identifying Equivalence Classes 

• Problem: Number of paths might be very large
• Hard to understand the expected behaviors.

• Proposed SoluCon: Equivalence Classes (ECs)
• EC = a group of “equivalent” paths

Pr(NormalFowarding)=0.9 Pr(ReRouting)=0.1
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Challenge #3: Handling stateful programs

• Problem: Data plane systems can be stateful
• Need a sequence of N packets to trigger a certain EC (e.g., Blink)

• Naïve solution: Explore all possible paths for N packets
• Poor scalability

• Proposed solution: Directed Symbolic Execution (DSE)
• Heuristic search: Prioritize the “closest” path 16
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Setup
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• Prototype implementaCon
• Symbolic execuCon engine: P4pktgen [SOSR’18]
• Model Counter: Python constraint library

• Experimental setup
• P4 load balancer
• Mininet simulator: 1 Bmv2 P4 switch + 3 hosts

If (TCP.sport % 2)
Forward (0)

Else
Forward (1)
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Generated aEack and defense
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EC 1
if (sport%2)

EC 2
else

• Generated a7ack:  Odd TCP source port numbers 
• Generated defense: Per-EC packet counters + periodic tests

Counter1 ++

Counter2 ++

KS_test(Counter1, Counter2)
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Link load results

• Normal traffic: 0~15s
• Attack starts at 15s
• Attack detected by the “patched” program
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Alarm raised!



Ongoing work
• How to handle input packets that follow non-uniform distributions?
• ”Distribution-aware” model counting

• How to group execution paths to ECs?
• Too fined-grained: too many ECs
• Too coarse-grained: lose useful information

• How to deal with switch resource constraints?
• Adding monitors consumes switch resources
• Compress monitors using sketches
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Conclusion

• MoCvaCon:
• Data plane systems are emerging
• Vulnerable to a new class of a7acks

• Our system: Automated aDack discovery
• 1) Obtain expected behaviors
• 2) Negate expected behaviors
• 3) Synthesis runCme monitors

• IniCal results:
• ✔ A7ack a simple 2-way load balancer
• ✔ Detected by runCme monitors

Thank you! 22


