
The DComp Testbed
Ryan Goodfellow, Stephen Schwab, Erik Kline, 

Lincoln Thurlow and Geoff Lawler



Outline

● Context: DCompTB is a Merge testbed facility.

● Testbed hardware design and physical networks.

● EVPN-Based experiment networks.

● Infrapod experiment services.

● Network emulation.

● Experiment materialization runtime.

● Modular technology stack.

● Virtual testbed development environment.



Some Quick Vocabulary
Experiment 

Model Realization Materialization

Testbed 
Facility



DCompTB as a Merge Testbed Facility

● The Merge Portal manages 
the experiment development 
process.

● Testbed facilities need only 
focus on materializing 
experiments.

● Facilities publish a testbed 
model to a merge portal and 
implement the merge driver 
interface.

● Facilities are implemented 
as an orchestrated set of 
self-contained software 
components



Testbed Hardware Design and Physical Networks

● 1440 nodes

○ 1200 minnow

○ 240 rohu

● 77 switches

● 5 emulation servers

● 4 storage nodes

● 2 infrastructure 
servers



Testbed Hardware Design and Physical Networks



Testbed Hardware Design and Physical Networks

Infrastructure 
Network



EVPN Testbed Networks

● Beginning life of a testbed

● Interesting devices exist

● Network equipment exists

● Let’s make a testbed!



EVPN Based Experiment Networks

● Separation of experiment 
infrastructure networks from the 
networks over which experiments 
execute is critical

● Don’t want to introduce artifacts from 
orchestration, remote file systems, 
etc...

● Experiments are just that experiments, 
if you're not destroying your 
experiment network on the fist go - 
whatever you’re doing is boring. 

● Need a network to function 
independent of what’s going on in the 
experiment network.

● Experiment networks are not generally 
flat - this is problematic for 
automation.



EVPN Based Experiment Networks

● Making things a bit more concrete than clouds, we 
have a set of leaf switches connecting to nodes and 
fabrics interconnecting leaves

● We need to provide isolation between experiments.

● Could use vlans, but experience has shown this to be 
problematic for a number of reasons.

○ Crossing routers presents issues.

○ Multicast support across switches and tunnels 
is problematic.

○ How about experiments that need to 
themselves tunnel, QinQ? Not viable for all 
sub-protocols, and stacking has issues for 
complex switching meshes.



EVPN Based Experiment Networks

● Enter Ethernet virtual private network (EVPN)

● A multiprotocol border gateway protocol (MP-BGP) 
implementation that provides a control plane for 
VXLAN.

● VXLAN: similar in spirit to VLAN with the following 
significant differences

○ Full packet encapsulation L2 in (L3 in L2).

○ Clean underlay overlay model - underlay is L3 
and routable just like normal L3.

○ 24 bit address space vs VLAN 12 bit (only 4096 
identifiers avail)

● EVPN provides several route types we only use at 2

○ macadv: mac X is reachable at VTEP P

○ multicast: VTEP P is reachable at addr A



EVPN Based Experiment Networks

● Now that we have a virtual network isolation mechanism, 
let’s make some virtual networks.

● Canopy is a virtual network synthesis system

● Client server model

○ Client runs at a sensible place in infrastructure with 
management access to network appliances

○ Servers run on network appliances

● Servers expose gRPC API for managing virtual network 
synthesis functions

○ VTEP create/destroy/parametrization

○ VLAN create/destroy (for internal VTEP plumbing 
and managing VLAN/VXLAN boundary networks)

○ MTU management

○ Port links state management



EVPN Based Experiment Networks
● Now we have isolated connectivity, but still lack basic network 

services for infrastructure networks.

● So we need DHCP and DNS, how do we hook it into our EVPN 
system

● The testbed switches run FRR’s bgpd, so let's just run that.

● A few issues

○ Again no real API

○ FRR’s self-compatibility is a zoo

■ Quagga variants

■ Cumulus variants

■ Pure FRR variants

■ Different BGPD/Zebra combos do things 
differently



EVPN Based Experiment Networks

● GoBGP to the rescue.

● A BGP upper half daemon written in pure Go.

● Has a gRPC API

● Great EVPN support

● Active development community that’s great to 
work with

● But it’s only an upper half, meaning it will speak 
MP-BGP to its neighbors, but to be useful we also 
need to update our own forwarding tables in 
response to this information.



EVPN Based Experiment Networks

● So we developed Gobble, a lower half for GoBGP

● Uses the GoBGP gRPC to poll for macadv and multicast evpn 
routes

● Updates the kernel’s neighbor, routing and bridge forwarding 
tables through netlink (we’ve also written an rtnetlink library in 
Go as we find many of our tools need to talk to the kernel 
through netlink)

● So now when we want to provide a service on a specific 
experiment’s infrastructure network, it’s as simple as 
advertising a mac address, standing up a VTEP and 
GoBGP/Gobble automatically takes care of the rest.

○ What mac address you say? Good question.

○ A few slides a snuck a hexagon around the Nex logo. 
That represents a container and the little box at the 
bottom represents a veth pair, with a MAC. More on 
this later.



EVPN Based Experiment Networks

● Now adding services on multiple infrastructure networks in 
an isolated way becomes almost trivial.

● Launching a new service simply means launching a 
container and advertising it’s MAC on the appropriate 
EVPN domain.

● This lets us run multiple services on an experiment’s 
infranet (common EVPN domain) as well as support 
multiple independent infranets without worry about 
crosstalk.



Infrapod Experiment Services
● Services do not end at DHCP/DNS, many others are 

needed.

● A container for each would work fine, but would create 
quite a bit of bloat.

● So we just burgle the Kubernetes Pod abstraction.

● Only need 1 experiment interface per N containers

○ (N-1) fewer
■ Interfaces
■ Network namespaces
■ Mac advertisements
■ IP addresses 

● Now we have a common landing spot for all container 
based services needed for any given experiment

● Not only for basic infrastructure needs, but also for 
experimenters who would like a place to place 
containerized services on their network but not allocate 
a testbed resource for it (something like Prometheus 
immediately comes to mind)



Infrapod Experiment Services

● Let’s make things a bit more concrete by 
putting server boundaries around things and 
call the servers that host services in the way 
just described infraservers.

● One cool thing is that an infraserver, is that its 
very easily replicated thanks to the dynamically 
routed nature of EVPN-based services.



Infrapod Experiment Services

● It’s also easy to have specific infraservers for 
specific things.

● As an example in our DARPA DComp testbed, we 
have purpose built storage servers that we run 
as another flavor of infraserver but the software 
stack is the same.

● The takeaway is that the basic architecture 
allows for a diverse family of specific building 
blocks to come together as a cohesive testbed 
under a robust underlay/overlay virtual 
multi-network.



Network Emulation

● Suppose this diagram is our 
experiment topology

● Black nodes at the edges are 
servers.

● Blue nodes are leaf switches

● Green nodes are fabric switches

● Teal nodes are spine switches

● The core network is BGP/ECMP 
based.



Network Emulation

● We want high fidelity at the 
edges (e.g. testbed nodes)

● Don’t want to have to 
implement an actual fattree 
load balanced network.

● DCompTB supports 
modeling and emulating the 
entire routed network and 
interconnecting nodes 
through it.



Network Emulation
● Support for multiple network 

types

○ Latency, capacity and loss 
parameterized p2p and 
multipoint links.

○ Wireless networks with 
mobility and migration models.

○ Several types of switched and 
routed networks.

● Basic traffic emulation 
included

○ Workload emulators (mimes)

○ Various source/sink models

Data Center Networks

Wireless Networks

Internet Models



Network Emulation

● Emulation plumbing works through 
surrogate type-2 (MACADV) EVPN 
advertisements.

● When X needs to talk to Z through an 
emulator

○ X is advertised to Z at the emulation server.

○ Z is advertised to X at the emulation server.

○ The emulation server emulates the network 
in between and kicks out the packets on 
VXLAN segment in which the real MACADV 
lives.



Experiment Materialization Runtime

● The cogs system transforms 
Merge materialization 
commands into a dependency 
graph of tasks.



Experiment Materialization Runtime

● The cogs system transforms 
Merge materialization 
commands into a dependency 
graph of tasks.

● Tasks are executed by a pool 
of replicated cog workers.



Experiment Materialization Runtime

● The cogs system transforms 
Merge materialization 
commands into a dependency 
graph of tasks.

● Tasks are executed by a pool 
of replicated cog workers.

● The cogs complete tasks 
using Merge technology stack 
components.



Modular Technology Stack

cogs Testbed facility automation system. wgd Wireguard configuration daemon

canopy Virtual network synthesis sled Imaging system

nex Integrated DHCP/DNS server tftp A TFTP server for PXE

rally Ceph-based network storage ipxe A fork of iPXE node bootstrapping

beluga Power control daemon rtnl A Go-based rtnetlink library

moa Network emulation engine images Testbed image creation automation

gobble GoBGP lower half for Linux stor Cogs storage library

foundry Testbed node configuration

All of the following were built to support DCompTB but are
● Useful in any testbed setting.
● Provide strong APIs
● Are completely open source.

https://gitlab.com/mergetb/tech

https://gitlab.com/mergetb/tech


Virtual Testbed Development Environment

● Testbed in a bottle.

● Created Raven virtualization tool to 
make it easy to describe and deploy 
complex networks of virtual machines.

● https://gitlab.com/rygoo/raven 

● Turn-key testing environment for Merge 
portal + testbed facility.

● https://gitlab.com/mergetb/prototypes

https://gitlab.com/rygoo/raven
https://gitlab.com/mergetb/prototypes


Thanks!



Backup



Popping up the stack

● Popping back up the stack, the general system looks 
like this

● In the top left we have a server that talks to Merge 
and acts as an entry point into the testbed. Then we 
have several flavors of infraserver.

● New in this diagram are network emulation nodes 
that live on experiment networks but are connected 
using the same EVPN stack.

● The takeaway is that the basic architecture allows 
for a diverse family of specific building blocks to 
come together as a cohesive testbed under a robust 
underlay/overlay virtual multi-network.



EVPN + Infrapods



Experiment Materialization Runtime

● The cogs system transforms 
Merge materialization 
commands into a dependency 
graph of tasks.

● Tasks are executed by a pool 
of replicated cog workers.

● The cogs complete tasks 
using Merge technology stack 
components.

● Every component in the Merge 
technology stack has a gRPC 
API making interfacing from 
the cogs simple.



EVPN Based Experiment Networks
● Services do not end at DHCP/DNS.

● Another interesting one is Sled - our System 
Loader for Ephemeral Devices (SLED). This is our 
OS imaging system.

● The Sled system does the following things
○ PXE-boots a u-root image with the sledc 

software on it
○ Sledc runs a protocol with the Sled server 

sledd that requests what image is 
supposed to be running on the node and 
where to get it

○ Sledc then grabs the image, stamps it on 
the device and kexecs into the images 
kernel (or bootloader)

● An interesting question is where to put sled? Just 
spin up another container and another address, 
maybe ...


