

Camdoop

Exploiting In-network Aggregation for Big Data Applications

Paolo Costa

costa@imperial.ac.uk

joint work with

Austin Donnelly, Antony Rowstron, and Greg O'Shea (MSR Cambridge)

MapReduce Overview

• Map

- *Processes* input data and *generates* (key, value) pairs

Shuffle

- *Distributes* the intermediate pairs to the reduce tasks

Reduce

- Aggregates all values associated to each key

Paolo Costa

Problem

- Shuffle phase is challenging for data center networks
 - All-to-all traffic pattern with O(N²) flows
 - Led to proposals for full-bisection bandwidth

- The final results are typically much smaller than the intermediate results
- In most Facebook jobs the final size is 5.4 % of the intermediate size
- In most Yahoo jobs the ratio is 8.2 %

• The final results are typically much smaller than the intermediate results

How can we exploit this to reduce the traffic and improve the performance of the shuffle phase?

Background: Combiners

- To reduce the data transferred in the shuffle, users can specify a combiner function

 Aggregates the local intermediate pairs
- Server-side only => limited aggregation

Paolo Costa

Background: Combiners

Split 0 Split 1 Split 2 Map Task → Combiner → Reduce Task → Split 2 Map Task → Combiner → Reduce Task → Map Task → Combiner → Reduce Task →

Intermediate results

- To reduce the data transferred in the shuffle, users can specify a combiner function

 Aggregates the local intermediate pairs
- Server-side only => limited aggregation

Paolo Costa

Input file

Camdoop: Exploiting In-network Aggregation for Big Data Applications

Final results

Distributed Combiners

 It has been proposed to use aggregation trees in MapReduce to perform multiple steps of combiners

 e.g., rack-level aggregation [Yu et al., SOSP'09]

Logical and Physical Topology

What happens when we map the tree to a typical data center topology?

Camdoop Goal

Perform the combiner functions within the network as opposed to application-level solutions

Reduce shuffle time by aggregating packets on path

How Can We Perform In-network Processing?

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic

How Can We Perform In-network Processing?

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets

(1,2,1) (1,2,2) How Can We Perform In-network rocessing:

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets

- Nodes have (x,y,z) coordinates
 - This defines a key-space (=> key-based routing)
 - Coordinates are locally re-mapped in case of failures

(1,2,1) (1,2,2) How Can We Perform In-network rocessing:

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets

Key property

No distinction between network and computation devices

Servers can perform arbitrary packet processing on-path

Mapping a tree...

- ... on a switched topology
- The 1 Gbps link
 becomes the 1/in-degree bottleneck

... on CamCube

 Packets are aggregated on path (=> less traffic)

Combiner

Reduce

Combiner

 1:1 mapping btw. logical and physical topology

Paolo Costa

Camdoop Design

Goals

- 1. No change in the programming model
- 2. Exploit network locality
- 3. Good server and link load distribution
- 4. Fault-tolerance

Programming Model

• Camdoop adopts the same MapReduce model

- GFS-like distributed file-system
 - Each server runs map tasks on local chunks
- We use a spanning tree
 - Combiners aggregate map tasks and children results (if any) and stream the results to the parents
 - The root runs the reduce task and generates the final output

Network locality

How to map the tree nodes to servers?

Paolo Costa

Network locality

Map task outputs are always read from the local disk

Paolo Costa

Network locality

The parent-children are mapped on physical neighbors

Paolo Costa

Network locality

This ensures maximum locality and optimizes network transfer

Network Locality

One physical link is used by one and only one logical link

Load Distribution

Poor server load distribution

Poor bandwidth utilization

Solution: stripe the data across disjoint trees ✓ Different links are used ✓ Improves load distribution

Solution: stripe the data across 6 disjoint trees ✓ All links are used => (Up to) 6 Gbps / server ✓ Good load distribution

Fault-tolerance

- The tree is built in the coordinate space
 CamCube remaps coordinates in case of failures
- Details in the paper

Testbed

- 27-server CamCube (3 x 3 x 3)
- Quad-core Intel Xeon 5520 2.27 Ghz
- 12GB RAM
- 6 Intel PRO/1000 PT 1 Gbps ports
- Runtime & services implemented in user-space

Simulator

- Packet-level simulator (CPU overhead not modelled)
- 512-server (8x8x8) CamCube

Design and implementation recap

	Camdoop
Shuffle & reduce parallelized	\checkmark

- Reduce phase is parallelized with the shuffle phase
 - Since all streams are ordered, as soon as the root receive at least one packet from all children, it can start the reduce function
 - No need to store to disk intermediate results on reduce servers

Design and implementation recap

	Camdoop
Shuffle & reduce parallelized	\checkmark
CamCube	\checkmark
Six disjoint trees	\checkmark
In-network aggregation	\checkmark

Design and implementation recap

	Camdoop	TCP Camdoop (switch)
Shuffle & reduce parallelized	\checkmark	\checkmark
CamCube	\checkmark	×
Six disjoint trees 🗸		×
In-network aggregation	\checkmark	×

TCP Camdoop (switch) 27 CamCube servers attached to a ToR switch TCP is used to transfer data in the shuffle phase

Paolo Costa

Design and implementation recap

	Camdoop	TCP Camdoop (switch)	Camdoop (no agg)
Shuffle & reduce parallelized	\checkmark	\checkmark	\checkmark
CamCube	\checkmark	×	\checkmark
Six disjoint trees	\checkmark	×	\checkmark
In-network aggregation	\checkmark	×	×

• Camdoop (no agg)

- Like Camdoop but without in-network aggregation
- Shows the impact of just running on CamCube

Paolo Costa

Validation against Hadoop & Dryad

Hadoop

- Sort and WordCount
- Camdoop baselines are competitive against Hadoop and Dryad
- Several reasons:
 - Shuffle and reduce parellized
 - Fine-tuned implementation

TCP Camdoop (switch) Camdoop (no agg)

Dryad/DryadLINQ

Validation against Hadoop

- Sort and WordCount
- Camdoop baselines are competitive against Hadoop and Dryad
- Several reasons:
 - Shuffle and reduce parellized
 - Fine-tuned implementation

We consider

Paolo Costa
Parameter Sweep

- Output size / intermediate size (S)
 - S=1 (no aggregation)
 - Every key is unique
 - S=1/N \approx 0 (full aggregation)
 - $\,\circ\,$ Every key appears in all map task outputs
 - We use synthetic workloads to explore different value of S

• Intermediate data size is 22.2 GB (843 MB/server)

- Reduce tasks (R)
 - R= 1 (all-to-one)
 - E.g., Interactive queries, top-K jobs
 - R=N (all-to-all)
 - Common setup in MapReduce jobs
 - $\,\circ\,$ N output files are generated

Paolo Costa

Number of reduce tasks (S=0)

Behavior at scale (simulated) N=512, S= 0

Paolo Costa

Paolo Costa

Beyond MapReduce

• More experiments (failures, multiple jobs,...) in the paper

Beyond MapReduce

- The partition-aggregate model also common in interactive services
 e.g., Bing Search, Google Dremel
- Small-scale data

 10s to 100s of KB returned per server
- Typically, these services use one reduce task (R=1)
 - Single result must be returned to the user
- Full aggregation is common (S ≈ 0) Leaf servers
 - E.g., N servers generate their best k responses each and the final result contains the best k responses

Cache

Parent

servers

requests

Web

server

Small-scale data (R=1, S=0)

Small-scale data (R=1, S=0)

Conclusions

Camdoop

- Explores the benefits of in-network processing by running combiners within the network
- No change in the programming model
- Achieves lower shuffle and reduce time
- Decouples performance from the # of output files
- A final thought: *how would Camdoop run on this?*
 - AMD SeaMicro a 512-core cluster for data centers using a 3D torus
 - Fast interconnect: <u>5 Gbps / link</u>

