Orchestrating the Deployment of Computations in the Cloud with Conductor

Alexander Wieder Pramod Bhatotia Ansley Post Rodrigo Rodrigues

NSDI 2012

27.04.2012

1

Planck Institute for Software Systems

Options for Processing Data in the Cloud

Why is choosing the best strategy challenging?

Variety of services and providers with different

- Pricing models
- Performance characteristics
- Locations
- Interfaces

Hybrid deployments

• Use own infrastructure and/or multiple different services at the same time

Dynamics during runtime

- Performance variations
- Spot markets

Conductor Goals

Simplify the management of cloud resources:

- Automatization: Automatically optimize resource allocation
- **Transparency**: Use multiple different services seamlessly
- Adaptivity: Automatically adapt to dynamics
 - Performance variations
 - Variable resource cost on spot markets

- Conductor System Overview
- Modeling Computations
- Using Cloud Resources Transparently
- Evaluation

High Level System Design

- Conductor System Overview
- Modeling Computations
- Using Cloud Resources Transparently
- Evaluation

Modeling Computations

- Hard to model computations in general case
- Unknown:
 - Data access patterns
 - Processing time
 - Scalability
- Feasible for specific programming models, e.g., MapReduce

Modeling MapReduce Computations

How can we model MapReduce Computations?

- Data-parallel processing
- Mostly linear dependencies:
 - Performance
 - Resources
 - Cost

Problem calls for a formulation as a linear program!

Modeling MapReduce Computations

- Conductor System Overview
- Modeling Computations
- Using Cloud Resources Transparently
- Evaluation

Deploying Jobs on the Cloud

- Conductor System Overview
- Modeling Computations
- Using Cloud Resources Transparently
- Evaluation

Evaluation

Questions we answer in the evaluation:

- Can Conductor find optimal execution plans?
- Can Conductor efficiently adapt to dynamics?
- Can Conductor enable hybrid deployments?
- What overheads does Conductor impose?

Evaluation Finding Optimal Execution Plans

Scenario:

- Job: k-means clustering, 32GB input data
- Resources: EC2, S3
- Deadline: 6h
- Minimize monetary cost

Goal:

- Automatically select resources
- Manage data transfer
- Launch job

Evaluation Finding Optimal Execution Plans

Evaluation Adapting to Dynamics

Observed resource performance in the cloud can vary for several reasons:

- Interference with co-located VM instances
- Network congestion
- Failures

Scenario:

EC2 performance ~3x overestimated

Conductor doesn't allocate enough resources to finish before deadline

Evaluation Adapting to Dynamics

Evaluation Adapting to Spot Market Prices

Can Conductor help cutting cost by leveraging spot resources?

Evaluation Adapting to Spot Market Prices

Methodology:

- Simulate job deployment using EC2 spot instances
- Spot pricing history over ~4 weeks
- Conductor uses an oracle or simple pricing predictor

- Conductor System Overview
- Modeling Computations
- Using Cloud Resources Transparently
- Evaluation

Summary and Conclusion

Observation:

Making best use of the cloud is hard!

Conductor's approach:

- LP-based system model
- Optimize for user goals
- Resource abstraction layers
- Adapt during runtime

Evaluation results:

Conductor can efficiently manage cloud deployments

Future work:

Apply Conductor's approach to other frameworks

Thanks for your Attention!

