

Securely Outsourcing Garbled Circuit Evaluation

USENIX Security Symposium 2013

Henry "Hank" Carter Patrick Traynor

Benjamin Mood Kevin Butler

Georgia Tech Information Security Center (GTISC)

SMC on mobile devices

- Mobile devices loaded with private and context-sensitive information and applications that use this information
- Secure Multiparty Computation (SMC) allows computation over encrypted inputs
- Highly constrained system resources (memory, power, processing, communication)

Why don't we have mobile SMC?

- The dominant construction, garbled circuits, require too much memory and processing power
- Special purpose protocols can be optimized, but no efficient general purpose techniques
- Wish: an efficient mobile two-party SMC scheme that generalizes to any function

Leveraging the cloud?

- Kreuter et al. provide an efficient way to perform maliciously secure SMC in large servers
- Assuming a device has a connection to a cloud service, can the expensive computation associated with garbled circuits be outsourced?
- We cannot simply trust the cloud.

Outsourcing Garbled Circuit Evaluation

- Setting: A limited mobile device (Alice) communicating with a web server (Bob). Alice also has access to a cloud service (Cloud).
- Goal: Alice and Bob securely compute a two-party function using garbled circuits. We consider the case where Bob generates the circuit and Alice evaluates.
- Security:
 - Preserve input and output privacy from both the other party and the cloud
 - Security in the malicious setting.

Our construction

- Begin with malicious secure technique developed by Kreuter et al.
- Adapt consistency checks such that Alice and Bob are assured that *all* parties are behaving
- Add "Outsourced Oblivious Transfer" construction to preserve mobile bandwidth

- 5 stages:
 - Circuit construction and validity check
 - OOT
 - Generator input consistency check
 - Circuit evaluation in the cloud
 - Output check and delivery

Alice (evaluator)

Security

- We retain all the security checks from Kreuter et al. to preserve security in:
 - Garbled circuits
 - Input consistency between evaluation circuits
 - Output integrity and majority check
 - OOT
- Formal proofs of malicious security in our tech report

Definition 1 A protocol securely computes a function f if there exists a set of probabilistic polynomial-time (PPT) simulators $\{Sim_i\}_{i \in [3]}$ such that for all PPT adversaries $(A_1, ..., A_3)$, x, z, and for all $i \in [3]$:

 $\{REAL^{(i)}(k,x;r)\}_{k\in\mathbb{N}} \stackrel{c}{\approx} \{IDEAL^{(i)}(k,x;r)\}_{k\in\mathbb{N}}$

Where $S = (S_1, ..., S_3)$, $S_i = Sim_i(A_i)$, and r is random and uniform.

Side note: collusion

- We prohibit collusion between the cloud and either party
 - Our OT construction breaks if Alice + cloud collude
 - The garbled circuit security breaks if Bob + cloud collude
- Kamara et al. notes that an outsourcing scheme with collusion implies an SFE scheme where one party performs sub-linear work w.r.t. circuit size.
- Realistic scenario: cloud service must preserve security and business reputation

Implementation

- Testbed
 - Dell R610 servers, dual 6-core Intel Xeon, 32 GB RAM
 - Galaxy Nexus, dual core I.2 GHz, I GB RAM
 - 802.11n (54 Mbps), Internal VLAN (1 Gbps)
- Test apps
 - Millionaire's Problem
 - Edit Distance
 - Set Intersection
 - ► AES-128

Results: Edit Distance Execution Time

Total runtime

Phase runtimes

98.9% speedup

Results: Edit Distance Bandwidth

Total bandwidth

Results: Edit Distance Over Multiple Circuits

Phase runtimes

Case study: large circuits

- Examined RSA-128 circuit used by Kreuter et al.
- Developed privacy-preserving navigation application
 - Alice inputs a start and end point, Bob inputs outages in a road system. The area map is publicly available
 - The circuit performs Dijkstra's shortest path algorithm to determine the shortest path from start to finish avoiding outages
 - The circuit returns the route to Alice.
 - Considered graphs of 20, 50, 100 nodes
- Testbed: 64 cores, I TB memory

Privacy-Preserving Navigation

Case study: results

- Run some of the largest circuits ever publicly evaluated from a mobile device
- Dijkstra's over 100 nodes > 2 billion gates un-optimized
- Evaluation times (128 circuits):
 - I00 nodes ~ 42 minutes
 - 20 nodes ~ 100 seconds

Conclusion

- Costly SMC operations can be outsourced to the cloud securely
- We develop a new OOT protocol to allow outsourced garbled circuit evaluation
- Experimental results show significant performance gains over evaluating directly from the device

