
IPAPI: Designing an Improved
Provenance API

Lucian Carata

Lucian Carata, Ripduman Sohan, Andrew Rice, Andy Hopper

Why do we need provenance APIs?

* 108

Application
semantics

System
semantics

Bottom up

Top down

Observed Provenance Disclosed Provenance (APIs)

Why do we need better provenance APIs?

• Current approaches: CPL, DPAPI*

– Centralized philosophy: “provenance far away from data”

• Do not really consider:

– Sub-file granularities
– Automation
– Pre-existing provenance data (e.g. logs)

Why do we need better provenance APIs?

• We need flexibility/generality to drive adoption

– less infrastructure requirements (e.g db services)
– more clear guarantees (completeness, durability,

overheads); explicit tradeoffs

Overview: IPAPI

• A C++ library that you link into your application,
some tools to manage provenance.

• Not dependent on any existing system services

Overview: IPAPI

• Decentralized (distributed provenance repositories)
– Provenance is closer to data (and can move

together with it)

• Developed with automation in mind:
– “how can other applications use the provenance disclosed

by my application?”

IPAPI Structure

…

App

 libIPAPI
Storage driver

.prov

data
input output

context

plugins

• Link with –lipapi and include ipapi.h in one of your
source files.

• You are now tracking (basic) process provenance
• Almost no overhead (minimal increase in startup time)
• Need more? Actually call the API functions.

IPAPI Structure

App

libIPAPI
Storage driver

.prov

data
input output

context

App

libIPAPI

Focusing in on the interface offered by the API

Application calling IPAPI

IPAPI Structure

App

libIPAPI

input

context

ping

libIPAPI

Active Passive

Create Namespace: OS::ping

Linux debian 2.6.24-1-686 #1 SMP :: 7853
ID

• An entity model that maps to system objects (processes, files,
pipes, sockets)

standalone, dependent, persistent, transient

Abstractly tracks granularity

IPAPI Structure

App

libIPAPI

input

context

ping

libIPAPI

Annotate

k/v
k/v

Relate

…

k/v
k/v

k/v
k/v

“foreign key”

“depends_on”

Active Passive

Namespace: OS::ping

Example

Namespace: OS::myapp

k/v
k/v

ifstream cfgin(“config.in”);
cfgin>>fname;
ifstream in(fname);
//… process in and write to out
ofstream out(“out.dat”);

“This program gets the name of its input
from a configuration file”

configp inputp outputp

pk: conf.in k/v
k/v

pk: file.in

“foreign key”

causal control

• Applications are able to create their own provenance-aware
objects. They need to respect the is_prov_aware trait

Pobject<ifstream> configp, inputp;
Pobject<ofstream> outputp;

outputp.obj_relation(CAUSAL, inputp);

configp.addkv(“inputf”,”file.in”);
inputp.pk.key_relation(configp,”inputf”);

inputf: file.in

myapp

Some Design Decisions

App

libIPAPI
Storage driver

.prov

data
input output

context

.prov

Repository format
Extensibility

plugins

+ flat object structure,
identified by hashes

+ multiple hierarchical views
on top (namespaces)

Some Design Decisions - Persistence

App

libIPAPI
Storage driver

.prov

data
input output

context

plugins
Storage driver

Persistence

shm

Transaction
log

Conclusions

• IPAPI is developed in order to experiment with
alternative provenance systems: ones which are
flexible, extensible and work in distributed
environments

• Clear understanding of granularity boundaries

• “You only pay for what you get” overheads

• Provenance-awareness at object level

Thank you!
lucian.carata@cl.cam.ac.uk

	IPAPI: Designing an Improved Provenance API
	Why do we need provenance APIs?
	Why do we need better provenance APIs?
	Why do we need better provenance APIs?
	Overview: IPAPI
	Overview: IPAPI
	IPAPI Structure
	IPAPI Structure
	IPAPI Structure
	IPAPI Structure
	Example
	Some Design Decisions
	Some Design Decisions - Persistence
	Conclusions
	Thank you!

