Lucian Carata, Ripduman Sohan, Andrew Rice, Andy Hopper

IPAPI: Designing an Improved
Provenance API

Lucian Carata

Why do we need provenance APIs?

IR

‘CCC‘H
00 o
@0

* 108
Bottom up

Observed Provenance

Application
semantics

System
semantics

Top down

N

Disclosed Provenance (APIs)

Why do we need better provenance APIs?

e Current approaches: CPL, DPAPI

— Centralized philosophy: “provenance far away from data”

Do not really consider:

— Sub-file granularities
— Automation
— Pre-existing provenance data (e.g. logs)

Why do we need better provenance APIs?

* We need flexibility/generality to drive adoption

— less infrastructure requirements (e.g db services)

— more clear guarantees (completeness, durability,
overheads); explicit tradeoffs

Overview: IPAPI

e A C++ library that you link into your application,
some tools to manage provenance.

* Not dependent on any existing system services

Overview: IPAPI

 Decentralized (distributed provenance repositories)

&L — Provenance is closer to data (and can move
Efﬂ-ﬂwmm together with it)

2 \granularity

2 |obj_hierarchy

 Developed with automation in mind:

— “how can other applications use the provenance disclosed
by my application?”

[PAPI Structure

YO ntext

input output
—> App) data
i IibIPAPIl G— G— -Prov
Storage driver

plugins f

e Link with -1ipapi andinclude ipapi.h in one of your
source files.

e You are now tracking (basic) process provenance

e Almost no overhead (minimal increase in startup time)

e Need more? Actually call the API functions.

[PAPI Structure

App

libIPAPI

Application calling IPAPI

Focusing in on the interface offered by the API

[PAPI Structure

Abstractly tracks granularity

\

4 \Y)
Create Namespace: OS::ping

Actkive Passive

p|ng (\ [A |
libIPAPI l standalone, dependent, persistent,
_ J
ID

Linux debian 2.6.24-1-686 #1 SMP :: 7853

* An entity model that maps to system objects (processes, files,
pipes, sockets)

[PAPI Structure

Annotate
4 .
Namespace: OS::ping
Actkive Panive
ping ! \ (\
libIPAPI
\-

‘ “depends_on” ‘
Relate

K/ foreign key > k/v
k/v k/v

“This program gets the name of its input
from a configuration file”

Example

ifstream cfgin(“config.in”); 4 Namespace: OS::myapp)
cfgin>>fname; configp

inputp outputp
ifstream in(fname);

ofstream out(“out.dat”);

pk: conf.in

Pobject<ifstream> configp, inputp; Inputf: file.in

Pobject<ofstream> outputp;

“foreign key”
configp.addkv(“inputf”?,”file.in”); ‘_ eh *&y

inputp.pk.key_relation(configp,”inputf”);
outputp.obj_relation(CAUSAL, inputp);

e Applications are able to create their own provenance-aware
objects. They need to respect the 1s_prov_aware trait

Some Design Decisions

Extensibility

Repository format

+ flat object structure,
identified by hashes

+ multiple hierarchical views
on top (namespaces)

Some Design Decisions - Persistence

shm

& —

Storagg driver
O

Persistence @:”

Transaction
log

Conclusions

* |PAPI is developed in order to experiment with
alternative provenance systems: ones which are
flexible, extensible and work in distributed
environments

e Clear understanding of granularity boundaries
 “You only pay for what you get” overheads

 Provenance-awareness at object level

Thank you!

lucian.carata@cl.cam.ac.uk

	IPAPI: Designing an Improved Provenance API
	Why do we need provenance APIs?
	Why do we need better provenance APIs?
	Why do we need better provenance APIs?
	Overview: IPAPI
	Overview: IPAPI
	IPAPI Structure
	IPAPI Structure
	IPAPI Structure
	IPAPI Structure
	Example
	Some Design Decisions
	Some Design Decisions - Persistence
	Conclusions
	Thank you!

