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Why do we need better provenance APIs? 

• Current approaches: CPL, DPAPI* 
 

– Centralized philosophy:  “provenance far away from data” 
 

• Do not really consider: 
 

– Sub-file granularities 
– Automation  
– Pre-existing provenance data (e.g. logs) 



Why do we need better provenance APIs? 

 

• We need flexibility/generality to drive adoption 
 

– less infrastructure requirements (e.g db services) 
– more clear guarantees (completeness, durability, 

overheads); explicit tradeoffs 



Overview: IPAPI 

• A C++ library that you link into your application, 
some tools to manage provenance. 
 

• Not dependent on any existing system services 
 



Overview: IPAPI 

• Decentralized (distributed provenance repositories) 
– Provenance is closer to data (and can move 

together with it) 
 
 

• Developed with automation in mind: 
– “how can other applications use the provenance disclosed 

by my application?” 



IPAPI Structure 
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• Link with –lipapi and include ipapi.h in one of your  
source files. 

• You are now tracking (basic) process provenance 
• Almost no overhead (minimal increase in startup time) 
• Need more? Actually call the API functions. 

 



IPAPI Structure 
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IPAPI Structure 
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• An entity model that maps to system objects (processes, files,  
pipes, sockets) 
 

standalone, dependent, persistent, transient 

Abstractly tracks granularity 



IPAPI Structure 
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Example 

Namespace:  OS::myapp 

k/v 
k/v 

ifstream cfgin(“config.in”); 
cfgin>>fname; 
ifstream in(fname); 
//… process in and write to out 
ofstream out(“out.dat”); 
 

“This program gets the name of its input 
from a configuration file” 

configp inputp outputp 

pk: conf.in k/v 
k/v 

pk: file.in 

“foreign key” 

causal control 

• Applications are able to create their own provenance-aware 
objects. They need to respect the is_prov_aware trait 

Pobject<ifstream> configp, inputp; 
Pobject<ofstream> outputp; 

outputp.obj_relation(CAUSAL, inputp); 

configp.addkv(“inputf”,”file.in”); 
inputp.pk.key_relation(configp,”inputf”); 

inputf: file.in 

myapp 



Some Design Decisions 
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+ flat object structure, 
identified by hashes 
 

+ multiple hierarchical views 
on top (namespaces) 



Some Design Decisions - Persistence 
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Conclusions 

• IPAPI is developed in order to experiment with 
alternative provenance systems: ones which are 
flexible, extensible and work in distributed 
environments 
 

• Clear understanding of granularity boundaries 
 

• “You only pay for what you get” overheads 
 

• Provenance-awareness at object level 



Thank you! 
lucian.carata@cl.cam.ac.uk 
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