HEEREEN
A NICE way to test
o oW Applications

Marco CanliniMpEniele Venzano,
Peter PeresinidDejaniKostic; JenniferRexfordt

Princeton University

25 Alplri

Software-Defined Networking (SDN)
N

Third-party
program

Enables new functionality through programmability ...

25 Apr 2012 NSDI'12 2

Q\,

/¢\

... at the risk of bugs

Network Operating System

A fatal exception has occurred at 16.3.0.5/CO011E36 in OF{B1) +
80010E36. The current OpenFlow application will be terminated.

* Press any Kkey to terminate the current OpenFlow application
* Press CTRL+ALT+DEL again to restart your network. Your
users will lose all network connectivity.

Press any key to continue

25 Apr 2012 NSDI'12 3

Software Faults x

:I e Will make communication unreliable
S~——1

é * Major hurdle for success of SDN
We need effective ways to test SDN networks
This talk: automatically testing OpenFlow Apps

25 Apr 2012 NSDI'12 4

Quick OpenFlow 101

program

Default: forward Install rule;
to controller forward packet

Host B

Host A

—
Switch 1 Switch 2

System is distributed and asynchronous =
can misbehave under corner cases

Packet

25 Apr 2012 NSDI'12 5

Bugs in OpenFlow Apps

Controll Drop
ontroller packet
[%ﬁ) Ope Install ?
pr rule
Install // DE'GVEd!
rUIe // \\
/7
7/
/7
Inconsistent distributed state!

Host A Host B

Goal: systematically test possible behaviors to detect bugs

25 Apr 2012 NSDI'12 6

Systematically Testing OpenFlow
Apps

State-space exploration
via Model Checking (MC)

e Carefully-crafted

- N
streams of packets Unmodified Target
Many orderings of OpenFlow system
packet arrivals program

and events

25 Apr 2012 NSDI'12

Scalability Challenges

Data-plane driven Complex network behavior

Huge space of Huge space of

possible possible
packets event orderings

Equivalence Domain-specific
classes of search
packets strategies

Enumerating all inputs and event orderings is intractable

25 Apr 2012 NSDI'12 8

Input NICE Output

4) No bugs
Unmodified In

OpenFlow Controller
program Execution
_
ot Traces of
Network as:;fr? c€ property
topology violations

NICE found 11 bugs in 3 real OpenFlow Apps

25 Apr 2012 <

Input

Unmodified
OpenFlow
program

Network
topology

Correctness
properties
(e.g., no loops)

NICE

No bugs
In
Controller
Execution

State-space
search

NSDI'12

Output

Traces of
property
violations

State-Space Model

Model State
Checking 0

State

8
/ \ / \ / \ / \ / \ / \
¥ X ¥ X ¥ Xo ¥ X ¥ X ¥ Y

System State

Controller (global variables)

Environment:
Switches (flow table, OpenFlow agent)
Simplified switch model

End-hosts (network stack)
Simple clients/servers

Communication channels (in-flight pkts)

Transition System

Data-dependent
transitions!

n actual
_in handler

Combating Huge Space of Packets

Equivalence classes of packets:
1. Broadcast destination

2. Unknown unicast destination
3. Known unicast destination

roadcast?

v v

Flood packet

Install rule and
forward packet

la|puey |eAllJe 19)ded

Code itself reveals equivalence classes of packets

25 Apr 2012 NSDI'12

14

Code Analysis: Symbolic Execution (SE)

Symbolic packet

1 path =
1 equivalence
class of packets =
1 packet to inject

is A.dst
broadcast?

no

A .dst € {Broadcast
A
A .dst € mactable

A 4 A 4

Flood packet

A .dst ¢

Infeasible from
initial state

A.dstin
mactable?

A .dst € {Broadcast
A
A .dst € mactable

STpuey |eAat

Install rule and
forward packet

25 Apr 2012 NSDI'12

15

Combining SE with Model Checking

host host host
@ send(pkt A) @dlscover _packets
0

send(pkt B)
Controller state
changes

discover _packets transition Ny
\\
Symbolic Enable new
Controller exeCUthn. New packets transitions:
Sl of packet_in host / send(pkt B)
handler host / send(pkt C)

25 Apr 2012 NSDI'12 16

Combating Huge Space of Orderings

OpenFlow-specific search strategies for
up to 20x state-space reduction:

.:NO-DELAY"_

FLOW-IR

25 Apr 2012 NSDI'12 17

Input

Unmodified
OpenFlow
program

Network
topology

Correctness
properties
(e.g., no loops)

NICE

No bugs
In
Controller
Execution

State-space
search

NSDI'12

Output

Traces of
property
violations

Specifying App Correctness

e Library of common properties
— No forwarding loops
— No black holes
— Direct paths (no unnecessary flooding)
— Etc...

* Correctness is app-specific in nature

APl to Define App-Specific Properties

ctrl
@ packet_in(pktA)
0

Register callbacks to def init():
observe transitions init local vars

register(“packet _in>)

Execute after
transitions

def on_packet in():
check system-wide state

* Built a NICE prototype in Python
e Target the Python APl of NOX

Prototype Implementation

p

N

Unmodified
OpenFlow
program

Stub NOX API

25 Apr 2012

Controller state &
transitions

NSDI'12

21

Experiences

* Tested 3 unmodified NOX OpenFlow Apps
— MAC-learning switch
— LB: Web server load balancer [wang et al., HotICE’11]

— TE: Energy-aware traffic engineering [CoNEXT'11]

* Setup
— Iterated with 1, 2 or 3-switch topologies; 1,2,... pkts
— App-specific properties
* LB: All packets of same request go to same server replica
* TE: Use appropriate path based on network load

Results

* NICE found 11 property violations = bugs

— Few secs to find 15t violation of each bug (max 30m)
— Few simple mistakes (not freeing buffered packets)

— 3 insidious bugs due to network race conditions

* NICE makes corner cases as likely as normal cases

Thank you! Questions?

Conclusions
NICE automates the testing of OpenFlow Apps

Input Output

http://code.google.com/p/nice-of/

Unmodified
OpenFlow
program

* Explores state-space efficiently

Traces of

property * Tests unmodified NOX applications

violations

Network
topology

* Helps to specify correctness

Correctness
properties
(e.g., no loops)

* Finds bugs in real applications

SDN: a new role for software tool chains

to make networks more dependable.
NICE is a step in this direction!

25 Apr 2012 NSDI'12 24

Backup slides

Related Work (1/2)

* Model Checking

— SPIN [Holzmann’04], Verisoft [Godefroid’97],
JPF [Visser’03]

— Musuvathi’04, MaceMC [Killian’07], MODIST [Yang'09]
* Symbolic Execution

— DART [Godefroid’05], Klee [Cadar’08],
Cloud9 [Bucur’11]

e MC+SE: Khurshid’03

Related Work (2/2)

* OpenFlow programming

— Frenetic [Foster’11], NetCore [Monsanto’12]
* Network testing

— FlowChecker [Al-Shaer’10]

— OFRewind [Wundsam’11]

— Anteater [Mai’11]
— Header Space Analysis [Kazemian’12]

Micro-benchmark of full state-space search

* Single 2.6 GHz core Pyswitch
e 64 GB RAM MAC-learning

switch

Compared with

e SPIN: 7 pings = out
of memory

e JPFis5.5 xslower

Concurrent m U“'q”e states

uLayer_z pingn 2 0.94 [S
—_ 3 12,801 5,257 47.27 [s]

‘ 4 391,091 131,515 36 [m]

7 5 14,052,853 4,161,335 30 [h]

State space reduction by heuristics

* Single 2.6 GHz core Pyswitch
* 64 GB RAM

Compared to base
model checking

—

B \\O-DELAY transitions

B FLOW-IR transitions
(| NO-DELAY CPU time

Reduction [%]
o
(6]

| | FLOW-IR CPU time

o

2 3 4 5
Number of pings

25 Apr 2012 NSDI'12

to 15t property violation of each bug

Transitions # / run time [s]

BUG | PKT-SEQonly | NO-DELAY FLOW-IR UNUSUAL
I 23/70.02 23/0.02 23/0.02 237/0.02

11 18/0.01 18 /0.01 18/0.01 18/0.01
11 11/70.01 16 /0.01 11/0.01 11/0.01
1Y 386/3.41 1661 /9.66 321/ 1.1 64/0.19
\% 2270.05 Missed 21/0.02 60/0.18
VI 48 /0.05 48 /1 0.06 31/0.04 4970.07
VII 297k / Th | 191k /39m Missed | 26.5k/5m
VIII 23/70.03 22/70.02 23/0.03 23/0.02
IX 21/0.03 1770.02 21/0.03 21/70.02
X 2893 /35.2 Missed | 2893/35.2 | 2367 /25.6
XI 98 /0.67 Missed 98 /0.67 2570.03

25 Apr 2012

NSDI'12

30

OpenFlow Switch Model

Example: adding Rule 1 and Rule 2

—_— switch

process_of
1) Flow Table

DN P 2
.\Q‘QQ.Q\Q Q/QQQ//
2) Flow Table Flow Table (4
Rule 1 Rule 2

install install
Rule 2 Rule 1
3) Flow Table Flow Table (5
Rule 1 ¢ Rule 2

Rule 2 Rule 1

25 Apr 2012 NSDI'12 31

MAC-learning switch (3 bugs)

OpenFlow
program

— —
Host A 1/ _2 2,/ \,1 Host B

A->B | port 2 A->B | port 1

BUG-I: Host unreachable after moving

MAC-learning switch (3 bugs)

|

OpenFlow
program

|

Host At

B->A | port 1

A->B | port 2

B->A | port 2

A->B | port 1

BUG-I: Host unreachable after moving
BUG-II: Delayed direct path

25 Apr 2012

NSDI'12

Host B

33

MAC-learning switch (3 bugs)

OpenFlow
program

Host A

BUG-I: Host unreachable after moving
BUG-II: Delayed direct path
BUG-III: Excess flooding

Web Server Load Balancer (4 bugs)

OpenFlow
program
Host A 1 U3 Server 1
Host B <:> Server 2
2 ~—"4

Custom property: all packets of same request go to same server replica

BUG-IV: Next TCP packet always dropped after reconfiguration
BUG-V: Some TCP packets dropped after reconfiguration
BUG-VI: ARP packets forgotten during address resolution
BUG-VII: Duplicate SYN packets during transitions

Energy-Efficient TE (4 bugs)

* Precompute 2 paths per <origin,dest.>
— Always-on and on-demand

e Make online decision:

— Use the smallest subset of network elements that
satisfies current demand

BUG-VIII: The first packet of a new flow is dropped

BUG-IX: The first few packets of a new flow can be dropped
BUG-X: Only on-demand routes used under high load
BUG-XI: Packets can be dropped when the load reduces

Results

* Why were mistakes easy to make?
— Centralized programming model only an abstraction

* Why the programmer could not detect them?

— Bugs don’t always manifest
— TCP masks transient packet loss
— Platform lacks runtime checks

* Why NICE easily found them?

— Makes corner cases as likely as normal cases

Example: MAC-learning Switch

1 ctrl_state = {} # State of the controller is a global variable (a hashtable)
2 def packet_in(sw_id, inport, pkt, bufid): # Handles packet arrivals
3 mactable = ctrl_state[sw _id]
4 is_bcast_src = pkt.src[0] & 1
5 is_bcast dst = pkt.dst[0] & 1
6 if notis_bcast src:
7 mactable[pkt.src] = inport
8 if (notis_bcast dst) and (mactable.has key(pkt.dst)):
9 outport = mactable[pkt.dst]
10 if outport = inport:
11 match = {DL SRC: pkt.src, DL DST: pkt.dst, DL TYPE: pkt.type, IN PORT: inport}
12 actions = [OUTPUT, outport]
13 install_rule(sw_id, match, actions, soft_timer=5, hard_timer=PERMANENT)
14 send_packet _out(sw_id, pkt, bufid)
15 return
16 flood_packet(sw_id, pkt, bufid)

Causes of Corner Cases
(Examples)

Multiple packets of a flow reach controller

No atomic update across multiple switches
Previously-installed rules limit visibility
Composing functions that affect same packets

Assumptions about end-host protocols & SW

