EXILINXALL PROGRAMMABLE

Achieving 10Gbps Line-rate Key-value Stores with FPGAs

Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers - Xilinx Research Jeremia Baer, Zsolt Istvan - ETH Zurich

© Copyright 2013 Xilinx

Introduction

Common middleware application running on x86s to alleviate bottlenecks on databases

> Agenda

- State of the art
- FPGAs
- Proposed architecture
- Results
- Limitations

Typical Memcached Implementations

> Best published numbers:

Platform	RPS [M]	Latency [us]	RPS/W [K]	
Intel Xeon (8 cores)	1.34	200-300	7	7K
Intel Xeon (2 sockete (asores)	3.15	200-300	11.2	
Memcache 1.4MRPS d & Intel Xeon (2 sockets, 16cores)	1.8	12 200us late		
TilePRO (64 cores)	0.34	200-400	5.0	
TilePRO (4x64 cores)	1.34	200-400	5.8	
Chalamalasetti (FPGA)	0.27	2.4-12	30.04	

Source: see paper

XILINX > ALL PROGRAMMABLE..

What are FPGAs?

Semiconductor devices that consist of a matrix of configurable logic blocks (CLBs) connected via programmable interconnects.

- > On an extremely large scale highly integrated (28nm, 2million logic cells)
- > Nowadays, FPGAs integrate many other blocks
 - Up to 3600 DSPs, 68Mb SRAM, 96 high-speed serial IO, ARM processors (Cortex-A9)
- > They can be programmed to become ANY custom circuit
 - Ideal for architectural exploration

We use FPGAs to implement a new dataflow-based architecture for memcached

Programming FPGAs?

FPGAs can be reprogrammed after manufacturing through hardwarebased design flow

Hardware design exposes a greater complexity to the user and requires therefore more engineering effort

Why Dataflow Architectures?

- > Memcached is fundamentally a streaming problem
 - Data is moved from network to memory and back with little compute

Dataflow architectures, frequently used for network processing, should be well suited towards the application

🗶 XII INX 🔰 ALL PROGRAMMABLE.

System-level Architecture

> High throughput through data-flow architecture

- > Low latency through tight integration of network, compute and memory
- > Hash table to support 2 million entries and 24GB of storage

🗶 XILINX 🕨 ALL PROGRAMMABLE.

FPGA-based Dataflow Architecture

© Copyright 2013 Xilinx

XILINX > ALL PROGRAMMABLE...

FPGA-based Dataflow Architecture

Exploiting task and instruction-level parallelism increases throughput and is more power efficient Inherently scalable

Hash Table architecture

- > Bob Jenkins lookup3 implemented in FPGA
- Collision handling through parallel lookup (8-way)
- > Flexible key handling through striping

System-Level Architecture

*below 3% of 1 core for 10% SET operations *limited memory access bandwidth on platform

System Test Setup

XILINX > ALL PROGRAMMABLE.

Power - Test Setup & Results

Test system 1: without FPGA board

Test system 2: with FPGA board

XII INX > ALL PROGRAMMABLE.

*(Power sourced from: power plug meter, xpower, data sheets and power regulator readings)

**(UDP, binary protocol)

***(includes FPGA and host system)

© Copyright 2013 Xilinx

Results - Performance

First Results of Memcached Evaluation

- > Sustained line rate processing for 10GE 13MTps possible
 - Significant improvement over latest x86 numbers
- Lower power
- > Combined: 36x in RPS/Watt with low variation

> Cutting edge latency

microseconds instead of 100s of microseconds

RPS [M]	Latency [us]	RPS/W [K]	
1.34	200-300	7	
0.34	200-400	3.6	
13.02	3.5-4.5	254.8	
13.02	3.5-4.5	106.7	
	1.34 0.34 13.02	1.34 200-300 I 0.34 200-400 I 13.02 3.5-4.5 I	

Source: see paper

XILINX ➤ ALL PROGRAMMABLE.

Current Platform Limitations

- Memory allocation & cache management
 - Current platform limitation
- Limited protocol support

XII INX > ALL PROGRAMMABLE.

Summary & Next Steps

- Dataflow architecture delivers 10Gbps line-rate performance and scalability to higher rates
- Significantly higher RPS/Watt, with that lower TCO

> Minimal latency

> Next Steps:

- Addressing limitations
- Trials with real use cases
- Exploration of other applications

EXILINXALL PROGRAMMABLE

Thank You. mblott@xilinx.com