
Wire Speed Name Lookup: 

A GPU-based Approach 

Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, 

Qunfeng Dong, Bin Liu, Wei Meng, Huichen Dai, 

Xin Tian, Hao Wu, Di Yang 



Wire Speed Name Lookup: A GPU-based Approach 

——Outline 

1. Introduction 

2. Name Lookup: Algorithm and Data Structure 

3. Implementation 

4. Experimental Results 

5. Conclusion  

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Background & Movivation 

 Name Lookup is widely used in a broad 

range of technological fields 

 search engine 

 information retrieval 

 text processing 

 intrusion detection/prevention 

 … 

Introduction Algorithm Implementation Results Conclusion 

 But we have met a new research issue in  

the CCN scenario 



Wire Speed Name Lookup: A GPU-based Approach 

——Background & Motivation 

 Content-Centric Networking (CCN) 

 CCN uses names to identify every piece of 

contents instead of IP addresses for hardware 

devices attached to IP network. 

 A forwarding table consists of name prefixes. 

 A core challenge and enabling technique in 

implementing CCN is exactly to perform name 

lookup for packet forwarding at wire speed. 

 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Background & Motivation 

 Naming in CCN 

 A CCN name is hierarchically structured and 

composed of explicitly delimited components 

/com/google/maps 

com google maps 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Background & challenges 

 Two High-level Requirements for CCN  Name 

Lookup: 

 

 

 

1) Longest name Prefix Matching(LPM) 

2) Strict latency requirement (<100us) 

 Introduction Algorithm Implementation Results Conclusion 

T 



Wire Speed Name Lookup: A GPU-based Approach 

——name lookup challenges 

 The detailed challenges of name lookup 

 Complex name structure 

   1) consists of digits and characters;  

   2) variable length name; 

        3) without an externally imposed upper bound. 

 The large-scale name table 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——name lookup challenges 

Backbone IP Table Size Number of Active Web-site Worldwide 

400k Prefixes 

100M Active Domain Names 

Name tables could be 2~3 orders of magnitude larger than IP lookup table 



Wire Speed Name Lookup: A GPU-based Approach 

——name lookup challenges 

 The detailed challenges of name lookup 

 Complex name structure 
   1) consists of digits and characters;  

   2) variable length name; 

        3) without an externally imposed upper bound. 

 The large-scale name table (2~3 orders larger )  

 Frequently update 

 Wire Speed (100Gbps Ethernet, OC-3072) 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Contributions 

1. We present the first design, implementation and 

evaluation of a GPU-based name lookup engine, which 

obtains 63.52M searches per second, enabling line rate 

of 127 Gbps. 

2. A new technique called multiple aligned transition arrays 

(MATA) is used to greatly compress storage space. 

3. Stream-based pipeline approach ensures actual per-

packet latency (less than 100us) while keeping high 

lookup throughput. 

 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Outline 

1. Background and Challenges 

2. Name Lookup: Algorithm and Data Structure 

3. Implementation 

4. Experimental Results 

5. Conclusion  

Background Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

 Character Trie  Two-Dimensional  

State Transition Table (STT) 
Name Table 

/a/bc/ 
/ab/c 
/a/ 
/ab/ 

0 

6 

2 3 

7 

1 

8 

4 

9 

5 
a 

b 

/ c b 
/ 

/ c / 
Character  Trie 

… / … a b c … 

0 1 

1 2 6 

2 3 

3 4 

4 5 

5 

6 7 

7 8 

8 9 

9 

… 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

 Two-Dimensional  State Transition Table 

(STT) 

 Advantage 

 Easy to build 

 Fast speed: One State Transition needs one memory 

access only 

 Disadvantage 

 Too much memory required to be implemented 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

STT 
Address Transition 

… … 

1045 /,1001 

1046 /,1003 

… … 

1096 b,999 

1097 a,998 

1098 /,997 

1099 b,1002 

1100 /,1004 

1101 c,1051 

1102 c,1053 

… … 

1000 

999 

… / … a b c … 

0 1 

1 2 6 

2 3 

3 4 

4 5 

5 

… 

Aligned Transition Array 

1000+a=1097 

 Aligned Transition Array (ATA) to compress STT 

offset + character’s ASCII code 

999+b=1097 

998 

998+b=1096 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

 ATA 
 Advantage 

 Keep fast speed: one state transition needs one 

memory access 

 Low memory space 

 Disadvantage 

 Building speed is too slow for large-scale name table 

 Cannot support incremental updates 

 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

Multiple Stride Character Trie  

Name Table 

/a/bc/ 
/ab/c 
/a/ 
/ab/ 

4 

1 2 

5 

0 

6 

3 

ab 

/ bc 
a/ 

/ c/ 

2-stride Character  Trie 

ATA 

Address Transition 

0 

1 a/,… 

… 

24879 ab,… 

… 

“a/” = 24879 

d-stride character trie, every state  

may have 28d transitions at most. 

ATA cannot support multiple Stride Character Trie 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

Multiple Stride Character Trie  

Name Table 

/a/bc/ 
/ab/c 
/a/ 
/ab/ 

4 

1 2 

5 

0 

6 

3 

ab 

/ bc 
a/ 

/ c/ 

2-stride Character  Trie 

Address Transition 

0 

1 

2 bc,… 

Multi-ATA 

Address Transition 

0 

1 a/,… 

2 

3 ab,… 

4 

5 

6 

“a/” Mod 7=1 

“ab” Mod 7=3 

“bc” Mod 7=1 

“bc” Mod 3=2 



Wire Speed Name Lookup: A GPU-based Approach 

—Algorithm & Data Structure 

Background Algorithm Implementation Results Conclusion 

 MATA 
 Advantage 

 Improve lookup throughput: one state transition 

consumes multiple characters, and each state 

transition requires only one memory access 

 Further compress memory space 

 Small ATAs in MATA are easier to build and manage 

 Support fast incremental update 



Wire Speed Name Lookup: A GPU-based Approach 

——Outline 

1. Introduction 

2. Name Lookup: Algorithm and Data Structure 

3. Implementation 

4. Experimental Results 

5. Conclusion  

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

—Name Lookup Engine Framework 

Name Table 

Character 
Trie 

Aligned 
Transition 

Array 

Update Forwarding 

CPU 

Name Lookup Engine 

Name Trace 

PCIe 

PCIe 

GPU 

Introduction Algorithm Implementation Results Conclusion 

NVIDIA GeForce  

GTX590 GPU board 



Wire Speed Name Lookup: A GPU-based Approach 

—Latency Optimization 

Name Table 

Character 
Trie 

Aligned 
Transition 

Array 

Update Forwarding 

CPU 

Name Lookup Engine 

Name Trace 

PCIe 

PCIe 

GPU 

Name 

Batch 

A 

B 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

—Latency Optimization 

Introduction Algorithm Implementation Results Conclusion 

 Batch Size: 16MB vs. 1MB 

How can we reduce name lookup latency 

while keeping high throughput? 

 



Wire Speed Name Lookup: A GPU-based Approach 

—Latency Optimization 

Introduction Algorithm Implementation Results Conclusion 

 CUDA Stream: 
 a stream is a sequence of operations that execute 

in issue-order   

0 0 0 1 1 1 

T0 T1 T2 T3 T4 T5 T6 

… 

Data Fetch 

Kernel Lookup 

Write Back 

0 

0 

0 1 

1 

1 

T0 T1 T2 T3 T4 

… 

Copy Engine: 

Kernel Engine: 



Wire Speed Name Lookup: A GPU-based Approach 

—Latency Optimization 

Introduction Algorithm Implementation Results Conclusion 

 CUDA Streams effectively reduce latency 

We still need to 

reduce  the delay 



Wire Speed Name Lookup: A GPU-based Approach 

—GPU Memory Access Optimization 

Name Table 

Character 
Trie 

Aligned 
Transition 

Array 

Update Forwarding 

CPU 

Name Lookup Engine 

Name Trace 

PCIe 

PCIe 

GPU 

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

—GPU Memory Access Optimization 

Introduction Algorithm Implementation Results Conclusion 

 GPU: Single-Instruction Multiple-Data (SIMD) 

 32 threads are organized as a Warp; 

 32 threads in a Warp synchronously run in SIMD 

manner; 

 GPU Memory: 

 Partition into 128-byte blocks; 

 Every memory access fetches a 128-byte block; 



Wire Speed Name Lookup: A GPU-based Approach 

—GPU Memory Access Optimization 

Introduction Algorithm Implementation Results Conclusion 

 Each 128-bytes block stores a name 
 Problem: when the 32 threads simultaneously read the first 

piece of data from each of the names they are processing, 

resulting in 32 separate memory accesses. 

 Interweaved Layout 
 A name is divided into 32 pieces; 

 32 pieces from 32 names are stored in one 128-byte block 



Wire Speed Name Lookup: A GPU-based Approach 

——Outline 

1. Introduction 

2. Name Lookup: Algorithm and Data Structure 

3. Implementation 

4. Experimental Results 

5. Conclusion  

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Platform: A commodity PC 

 

 

 

 

 

 Name Table 
 Download from DMOZ website: 3M 

 Crawl from Internet: 10M 

 Name Trace 
 Average workload: random name prefix + suffix 

 Heavy workload: the longest 10% name prefix + suffix 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Memory Space 

 3M name table 

 ATA    vs  STT: 101× 

 MATA vs  STT: 130 × 

 10M name table 

 ATA    vs  STT: 102× 

 MATA vs  STT: 142× 

 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Lookup Speed (Million Searches per Second, MSPS) 

 100K, Average Workload 

 100K, Heavy Workload 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Lookup Speed (Million Searches per Second, MSPS) 

 10M, Average Workload 

 10M, Heavy Workload 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Which is the bottleneck of name lookup engine? 

 PCIe bus or GPU kernel? 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Which is the bottleneck of name lookup engine? 

 PCIe bus or GPU kernel? 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Scalability 

 Lookup speed 

 Memory 

 Latency 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Scalability 

 Lookup speed 

 Memory 

 Latency 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Scalability 

 Lookup speed 

 Memory 

 Latency 



Wire Speed Name Lookup: A GPU-based Approach 

——Experimental Results 

Introduction Algorithm Implementation Results Conclusion 

 Update 

More than 30K 

insertion per second 

Nearly 600K 

deletion per second 



Wire Speed Name Lookup: A GPU-based Approach 

——Outline 

1. Introduction 

2. Name Lookup: Algorithm and Data Structure 

3. Implementation 

4. Experimental Results 

5. Conclusion  

Introduction Algorithm Implementation Results Conclusion 



Wire Speed Name Lookup: A GPU-based Approach 

——Conclusion 

Introduction Algorithm Implementation Results Conclusion 

1. MATA is proposed to compress memory space 

and improve name lookup speed 

2. Implement a wire speed name lookup engine 

based on a commodity PC installed with a 

GTX590 GPU board 

3. Extensive experiments demonstrate: 
 Name lookup speed: 63.52 MSPS,>100 Gbps wire-speed 

 Latency: <100us 

 Memory: compress >100× 

 Good Scalability 

 

 



Thanks 

Q & A 


