Language-based Defenses against
Untrusted Browser Origins

K Bhargavan A Delignat-Lavaud S Maffeis

INRIA Paris INRIA Paris Imperial College London

Towards Defensive Web Components

* How do we write security-sensitive JavaScript
components that may be safely executed
within partially-trusted websites?

Website (W) Data Server (S) Db
Threats:
| * Malicious host server
l u’s Browser
* Bu or malicious scripts
Web Page (HTML) ggy p
e XSS attacks
Security
API ot el Component Goals:
— > Cookies | e |ts functionality cannot be

i Local tampered with
Storage
* |ts secrets cannot be stolen

Example: Single Sign-On

‘=

@Pinterest X

C' f [https://pinterest.com

Pinterest

A few (million) of your favorite things.

‘ 'F Sign up with Facebook

Sign up with email

Leave a Reply

@ | Login NS

Enter your comment here...

Log In

f

Log In

Provides access to user’s
identity and social data

Runs 3-party authentication
and authorization protocol

Holds secret access token

How to prevent access
token leaks?

— to unauthorized hosts

— by malicious, buggy
scripts on honest hosts

Example: Client-side Encryption

e Storage and retrieval of

MEGA encrypted data using a
0"'““ client-side crypto library
@ v © padagebin — Cloud storage services

A Contacts

— Password managers

* Long-term encryption keys
never leave the client

4§ Filetransfers

mMy LastPass Vault

‘= C M |8 LastPass (Marvasol, Inc) [US]| https://lastpass.com/index.p

+ How to protect agains

encryption key leaks?

Actions Vault gc:(r)m;slll Identities Shares ;::;r:i:” . by Ot h er sc ri ptS on page
Name
Settings 4 | (none)
© Add Site EJ accounts.google.com

» “Ed tacebook.com
#| Add Secure Note .

= L inratr
A~ Create Groun .

Survey of Web Security Components

* We studied and analyzed mechanisms used by
popular web security components

— Single sign-on, Password managers, Encrypted cloud
storage services, Privacy-sensitive web applications

e Variety of deployment techniques with
different levels of code integrity and isolation

— <script>

— Dynamically load script and eval
— <iframe>

— Java applet

— bookmarklet

— browser extension

Attacks on Surveyed Components

* Unauthorized websites can fool components into releasing
secrets meant for honest websites

e Attackers can exploit standard website vulnerabilities on
authorized websites to steal component secrets

— XSS, Open Redirectors, CSRF, ...

Product Category Protection Mechanism | Attack Vectors Found Secrets Stolen
Facebook Single Sign-On Provider | Frames Origin Spoofing, Login Credential,
URL Parsing Confusion | API Access Token
| Helios, Yahoo, Bitly | Single Sign-On Clients | OAuthLogin | HTTP Redirector, |] Login Credential, |
WordPress, Dropbox Hosted Pages API Access Token
| Firefox =~ | WebBrowser | Same-Origin Policy | Malicious JavaScript, | Login Credential, |
CSP Reports API Access Token
1Password, RoboForm Password Manager Browser Extension URL Parsing Confusion, | Password
Metadata Tampering
| LastPass, PassPack | Password Manager | Bookmarklet, Frames, | Malicious JavaScript | Bookmarklet Secret, |
Verisign, SuperGenPass JavaScript Crypto URL Parsing Confusion | Encryption Key
SpiderOak Encrypted Cloud Storage | Server-side Crypto CSRF Files,
Encryption Key
Wuala | Encrypted Cloud Storage | Java Applet, Crypto | Client-side Exposure | Files, |
Encryption Key
' Mega | Encrypted Cloud Storage | JavaScript Crypto | XSS |1 Encryption Key |
| ConfiChair, Helios | Crypto Web Applications | Java Applet, Crypto | XSS |] Password, |

Encryption Key

Towards Robust Component Security

Component security is fragile against same-origin attackers
— every buggy script presents a potential attack
— every XSS attack is fatal and leaks all secrets

Getting component security right against cross-origin
attackers is hard, even with strong isolation mechanisms

— flaws in authorization logic
— incorrect use of crypto
— incorrect assumptions about the same origin policy

Need for a component programming framework that
affords stronger isolation guarantees and
supports automated formal analysis

The DJS Architecture

DJS: a small statlcally-typed Host Website Script Server

subset of JavaScript |
— formal isolation guarantees 1 Browser/
against malicious context Web Page (HTV
A
DJCL: a crypto library in DJS -
API B

— secure communications with DJS Script

Typechecker defensive? o

other trusted components Component
yes
- app“cal'ions bU||t W|th DJS, DJCL \w Browser Model Pi Calculus Model
and browser mechanisms

ProVerif secure?

no

DJS2PV: a protocol verifier

Cookies Local Storage yes

— verifies security goals with a
symbolic model of browser, crypto

See: http://www.defensivejs.com

DJS DESIGN BY EXAMPLE

Example: Token-based APl Access

* @Goal: A JavaScript program that uses a secret
token to restrict access to a REST API

— (code excerpted from OWASP CSRFGuard 3)

<script>
var token = “XXXYYYYZZZ...”;
var acl = [“https://rest.W.com?”,...]
var api = function(url){
if (acl.indexOf(url) !==-1) {
return xhr(url+”?token="+tokeny;

Page can read &
write global

variables, DOM,
localStorage y

H

</script>

— even when running with malicious scripts
— attacker’s goal: bypass acl and/or steal the token

Example: Using JavaScript Closures

e Local variables in function bodies are not
exposed to the JavaScript context

<SCl‘i|0t>_ _ /Page scripts ca n\
var api = (function(){ . read inline and
var token = “XXXYYYYZZZ”; L

same-origin
scripts y

var acl = [“https://rest.W.com”,...]
var api = function(url){
if (acl.indexOf(url) !==-1) {
return xhr(url+"?token="+token);}}
return api;

910,

</script>

Example: Using a Script Server

e Serve script from a separate origin

— Page cannot read cross-origin scripts (SOP)

— Server generates, embeds session-specific token

<script src=“http://scripts.W.com/api.js”>
</script> /

var api = (function(){

var token = “XXXYYYYZZZ”;
var acl = [“https://rest.W.com?,...]

var api = function(url){
if (acl.indexOf(url) !==

return api;

$)0)

-1) 4

return xhr(url+"?token="+token);}

Browser’s XHR\
primitive can be
redefined to
steal token)

Example: Using Crypto

* |nstead of token, send a MAC using the token
to authenticate the XHR request

<script src="“http://scripts.W.com/api.js”’>

</script>

var api = (function(){

var token = “XXXYYYYZZZ";
var acl = [“https://rest.W.com?”,...]

var api = function(url){
if (acl.indexOf(url) !==
return xhr(url
return api;

$)0)

var hmac = function(k,x){...f().:

redefined to

N

url provided by attacker
may be an object
triggering an implicit

D

Array.prototype.
indexOf can be

conversion (toString) y

Example: Self-contained Code

e No external references

— include all auxiliary functions within closure
— don’t trigger implicit conversions, prototype lookups, ...

<script src="“http://scripts.W.com/api.js”’>
</script> /

var api = (function(){
var token = “XXXYYYYZZZ";
var acl = [“https://rest.W.com?”,...]
var mem = function(x,acl){...}
var hmac = function(k,x){...f()....}
var api_url = function(url){
if (mem(url,acl)) {
return (url+"?token="+hmac(token,url));}}
return (function(url){xhr(api_url(url))});

10

Example: Writing Defensive JavaScript

* [tis possible to carefully write JavaScript code
that protects its functionality and secrets from
malicious scripts

— relying on a separate script server,
a cryptographic library,
and by writing fully self-contained code

* but it can be painful and error-prone
— easy to miss JavaScript corner cases
— need for automated tools and formal guarantees

DJS Type System

* A sound static type system that identifies a formal
subset of JavaScript and enforces our defensive idioms

— fully self-contained, no external references

— all code wrapped in a closure and exposed
through a typed first-order API

Type Safety Guarantees:

* Independence: The input-output functionality of well-
typed programs is the same in all JavaScript contexts

* Encapsulation: The only way a context can discover the
content of a typed program is by calling its API

Example: Typing Guarantees

* Independence: External ¢ Encapsulation: External

scripts cannot bypass scripts cannot read
the authorization check token, but can call api
on url and acl to learn the HMAC

var api = (function(){
var token = “XXXYYYYZZZ”;
var acl = [“https://rest.W.com?,...]
var mem = function(x,acl){...}
var hmac = function(k,x){...f()....}
var api_url = function(url){
if (mem(url,acl)) {
return (url+"?token="+hmac(token,url));}}
return (function(url){return (xhr(api_url(url)))});

$)0)

Typing Restrictions

All variables are lexically scoped
— and statically typed
— no implicit coercions

Objects and arrays are defined as literals
— not extensible

— no prototype inheritance

— limited support for dynamic accessors (x[y])

No eval

No direct access to DOM or browser libraries
— Possible to grant limited access via postMessage

Programming in DJS

* Not meant for general web applications

but works well for security-critical components

— Cryptography, Authorization Policies

— Rest of the page remains in full JavaScript

* Type inference tool

— Verifies that a JavaScript program is well-typed in DJS

Program LOC Typing PVLOC ProVerf

DJCL 1728 300ms 114 No Goal

JOSE 160 36ms 9 No Goal

Sec. AJAX 61 7ms 243 12s

LastPass 43 42ms 164 21s

Facebook 135 42ms 356 43s

ConfiChair 80 3lms 203 25s v

Program LOC Typing PV LOC ProVerif

DJCL 1728 300ms 114 No Goal
JOSE 160 36ms 9 No Goal
Sec. AJAX 61 7ms 243 12s
LastPass 43 42ms 164 21s
Facebook 135 42ms 356 43s
ConfiChair 80 31ms 203 25s

DJS APPLICATIONS

DJCL: Defensive Crypto Library

e A JavaScript crypto library written in DJS
— SHA-256, HMAC, AES CBC/CCM/GCM, RSA OAEP/PSS
— BASE64, UTF8, JSON, JOSE

* Typing guarantees:
— Crypto computations cannot be tampered with
— Does not leak keys to the environment
(except possibly through side-channels)

* High performance:
— As fast as (or faster than) SICL, JSBN

— Statically-allocated, self-contained, functional code
in JavaScript is well suited to optimization (like asm.js)

DJS2PV: Veritying DJS Applications

° I -
e B DJS to pi calculus translation

| — uses static typing
‘l Browser/ — DIJCL -> symbolic crypto model

rerpreerm_ * WebSpi Browser Model
DIS Library — HTTP/HTTPS, XMLHttpRequest
API ¥ L]
DIS Script . ~~_n — Cookies, localStorage
ypechecker defensive?

T compc’nen}/ - — JavaScript heap, SOP
Browser Model Pi Calculus Model . . o
j—'J _* ProVerif protocol verifier

ProVerif secure?
— Dolev-Yao adversary,
unbounded sessions

Cookies Local Storage yes

— Verifies secrecy and authenticity
— Or finds attacks

Password Manager Bookmarklet

* LastPass Login Bookmarklet

— On click included code runs in the current page

— Uses an embedded secret to perform authenticated RPC
with LastPass server

— Attack: Malicious script on hosting page can steal the
bookmarklet secret (and hence LastPass data)

A
0066 W Twitter X n

&~ C M [www.cnn.com tab =

LastPass Login!

’ LastPass Login!
b javascript:(function()%7B/

Language: English

Click_This_Button_To_AutoLogin___Copyright_LastPass_all_rights_reserved/
_LASTPASS_INC%3Dfunction(u,s)%7Bif(u.match(/_LASTPASS_RAND/))
%7Balert(*27Cancelling_request_may_contain_randkey#2 7)%3Breturn¥%3B%7Ds
%3Ddocument.createElement(%2 7script®2 7)%3Bs.setAttribute(%2 7type

%27 %27text/javascript%27)%3Bs.setAttribute(%2 7charset

%27 %27UTF-8%27)%3Bs.setAttribute(%27src#27,u) Username or email
%3Bif(typeof(window.attachEvent)!%3D%2 7undefined
%27)document.body.appendChild(s)%3Belse
%7Bif(document.getElementsByTagName(%27head%27).length
%3E0)%7Bdocument.getElementsByTagName(%27head%27).item(0).appendChild(s)
%3B%7Delse%7Bdocument.getElementsByTagName(%2 7body
%27).item(0).appendChild(s)%3B%7D%7D%7D%3B_LASTPASS_RAND%3D
%27a341fdf6fe26eb0291caf9371cbf3e5ae9f4013f7bac5862901d4ac663fdf585%
27%3B_LASTPASS_INC(%2 7https://lastpass.com/bml.php

%2 7%2BStrina.fromCharCode(63)%2B%2 7v¥%3D0%26a%3D1%26r%3D

Password Manager Bookmarklet

* Improved version of LastPass Login
— Uses DJS to isolate bookmarklet code from page
— Secure AJAX call to LastPass server using DJCL
— Fits in 2048 bytes (including AES, HMAC)
— Protocol model extracted and verified with DJS2PV

* Improved Security Guarantees

— Bookmarklet secret and LastPass passwords not
revealed to malicious sites

— Click Authentication: Form only filled if the user clicks
on the bookmarklet, no automatic login

Script-level Access Control for FB

* Facebook APl and token accessible to all
scripts running on the host origin
— Vulnerable to a number of web attacks
— Open Redirectors, XSS, malicious hosted pages
— Should be accessible only by site scripts

Leave a Reply

Enter your comment here

Script-level Access Control for FB

 Modified Facebook API design:

— Token is never released to the page,
— Only authorized scripts may call the FB API
— API calls authenticated using session keys and DJCL

* Results:
— Modify one method in the FB SDK (0.5% of codebase)
— Add 20 lines of DJS code + DJCL to authorized scripts

— Negligible performance impact
— Protocol model extracted and verified with DJS2PV

XSS-Resistant Client-side Encryption

e ConfiChair website uses client-side encryption
— Java Crypto applet with JavaScript API
— Keys stored in local storage
— XSS attack on any page leaks all keys

A
©66 i Conferences: index %\ [EdLastPass - Password Man: »
&~ C f G https://www.confichair.org o=
Conferences About | Register | Log in

Welcome to ConfiChair. Please read about ConfiChair,
register or log in.

Note

ConfiChair is experimental demonstration

D software that is not stable enough to be used for
a real conference. We cannot currently offer the
quality of service that would be required for a
real conference.

ConfiChair Note

ConfiChair requires a Java plug-in to provide file
dialoatiec and crvntonoranhic anera trinne Dlder

XSS-Resistant Client-side Encryption

e QOur design:
— Java applet replaced with DJCL
— Encryption scripts embedded with session key
— Keys stored encrypted with session key in local storage
— No other script obtains the keys

* Result:
— Modified less than 10 lines of website code
— Encryption library is typechecked in DJS
— Full crypto protocol verified with DJS2PV

Summary

Many recent attacks on JavaScript security components

DJS: An architecture for programming and analyzing
JavaScript security components

Small code changes yield strong isolation guarantees
— XSS-resistant security components
— applicable even to server-side JavaScript (e.g. Node)

DJS programs are fast or faster than idiomatic JavaScript
— triggers optimizations similar to asm.js

Automated formal analysis for web crypto protocols in DJS
— relying on formal models of crypto and the browser

Questions?

e Try it: http://www.defensivejs.com

