



#### Clockwork Empires





#### Clockwork Empires





#### Mental Models



#### Realization





#### Mental Models



#### Realization







#### Realization









#### Realization









#### Mental Models



#### Realization



















#### How do we think about parallelism?







#### How do we think about parallelism?







#### Mental Models

#### The "Undergrad Model"





James

#### The "Undergrad Model"







#### The "Undergrad Model"









#### Mental Models

#### The "Undergrad Model"



Gaslamp Games







### L1 Cache hit: ~**1-3** cycles L2 Cache hit: **10s** of cycles Main Memory Access: **100s** of cycles





## L1 Cache hit: ~1-3 cycles L2 Cache hit: **10s** of cycles Main Memory Access: **100s** of cycles Cloud Access: Many many many many many cycles















#### Schedule Data, Not Code







#### What if we pick up the other end of the stick?





#### What if we pick up the other end of the stick?





ames

#### What if we pick up the other end of the stick?







#### Schedule Data, Not Code

#### Schedule Data, Not Code









SFL

#### Data is in Collections

#### Code is static

#### Data is dynamic





#### Code is static

#### Data is dynamic

#### But data never travels alone.





























#### Collections



## UBC

#### Collections

#### What is a work unit?





#### Collections



# The smallest set of subcollections needed for processing in making forward progress in the application.







#### Mental Models



#### Realization





#### Mental Models



#### Realization




#### **Realization Problems**







#### **Realization Problems**

# How do we efficiently deal with sub-collections?





#### **Realization Problems**

# How do we efficiently deal with sub-collections?

# How do we structure programs?





# How do we efficiently deal with sub-collections?

# How do we structure programs?

How do we derive schedules?







# Synchronization via Scheduling (SvS)

#### Basic Idea:

#### Basic Method:





## Basic Idea:

Know what data a task is going to access before it executes and use this information to make scheduling decisions.

Basic Method:





## Basic Idea:

Know what data a task is going to access before it executes and use this information to make scheduling decisions.

Basic Method:

Derive a compact representation (a single bit string) of the 'space' of potential access for quick comparisons during scheduling.



SFU

## Software Patterns (IMR)



































## Stencil Patterns







## Stencil Patterns

#### List modification







## Stencil Patterns

# List modification

## Tree Modification







## Stencil Patterns

List modification

Tree Modification

Graph Modification









## Stencil Patterns

List modification

Tree Modification

Graph Modification

... more







SFU

# Programming Support





## 'First class' collections





## 'First class' collections

Actor Model





## 'First class' collections

## Actor Model + Messages







## 'First class' collections

## Actor Model + Messages + Queries







SFU

#### Mental Models



#### Realization

Experience





#### Mental Models



#### Realization

Experience







SFU

## Experiments: spatialDictionary

Ga





Gas





SFU









SFU

|          |                    |                                                 |            | — 30.0 |
|----------|--------------------|-------------------------------------------------|------------|--------|
|          |                    |                                                 |            | — 22.5 |
|          |                    |                                                 |            | - 15.0 |
|          |                    |                                                 |            | - 7.5  |
|          |                    |                                                 |            | 0      |
| 1        |                    | 4                                               | 8<br>1 ook | 16     |
| p<br>mes | Global Lock<br>SvS | <ul><li>Progressive</li><li>SvS Cache</li></ul> | d          |        |



















#### Future Work







#### Future Work

# Optimized scheduling





#### Future Work

# Optimized scheduling

## Robust query support





#### Questions










#### Questions



























composable





composable

quick to compute and compare









only false positives for intersection

quick to compute and compare









quick to compute and compare













#### Preliminary Stuff

Gaslamp Games



#### Preliminary Stuff



