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The “Undergrad Model”
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int main(int argc,char **argv)
{

}

foo(x) bar(y) baz(z)
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L2 Cache hit:  10s of cycles

Main Memory Access:  100s of cycles

Cloud Access:                    Many many many
many many cycles

deadlock

livelock

starvation state conflicts

load 
balancing
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misprediction
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Data is in Collections

Code is static

Data is dynamic

almost always
generally

But data never travels alone.
rarely

It comes in collections.
We rarely use a whole collection at once.
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What is a work unit?

The smallest set of subcollections needed for 
processing in making forward progress in the 

application.
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Realization Problems 

How do we efficiently deal with sub-collections?

How do we structure programs?

How do we derive schedules?
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Synchronization via Scheduling (SvS)

Basic Idea:
Know what data a task is going 
to access before it executes and 

use this information to make 
scheduling decisions.

Basic Method:
Derive a compact representation 
(a single bit string) of the ‘space’ 

of potential access for quick 
comparisons during scheduling.
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Software Patterns (IMR) 

Isolate

Modify

Release

Stencil Patterns

List modification

Tree Modification 

Graph Modification

... more
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Actor Model +   Messages +   Queries

‘First class’ collections
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Optimized scheduling

Robust query support
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Thanks to

Anonymous reviewers

Gaslamp Games
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SvS - Signatures 

composable

quick to compute 
and compare

separate evaluation of data 
items from synchronization  

only false positives for 
intersection

easy to make arbitrarily 
precise 
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inXspan( int x, int s ) : Cell I [  | I.x - x | <= s ]
inYspan( int y, int s ) : Cell I [  | I.y - y | <= s ]

inRadius( ivec2 C, int r ) : Cell I [ inXspan<C> ( C.x, r )  and 
inYspan<C>( C.y, r ) ]

Super preliminary warning!


