
CAS AC DE

Micah J Best | UBC
Nicholas Vining | UBC

Daniel Jacobsen | Gaslamp Games
Alexandra Fedorova | SFU

Collection-focused

Parallel"m

Clockwork Empires

Clockwork Empires

Experience

Realization

 Sub-collections are a good candidate for
the basic unit of parallelism

Mental Models

Argument

Experience

Realization

 Sub-collections are a good candidate for
the basic unit of parallelism

Mental Models

Argument

Experience

Realization

 Sub-collections are a good candidate for
the basic unit of parallelism

Mental Models

Argument

Experience

Realization

 Sub-collections are a good candidate for
the basic unit of parallelism

Mental Models

Argument

Experience

Realization

 Sub-collections are a good candidate for
the basic unit of parallelism

Mental Models

Argument

Experience

Realization
 Sub-collections are a good candidate for

the basic unit of parallelism

Mental Models

Argument

Mental Models

Mental Models

How do we think about parallelism?

Mental Models

How do we think about parallelism?

Mental Models

The “Undergrad Model”

Mental Models

The “Undergrad Model”

Processor
1

Processor
2

Processor
3

Processor
4

int main(int argc,char **argv)
{

}

foo(x)

bar(y)

baz(z)

Mental Models

The “Undergrad Model”

Processor
1

Processor
2

Processor
3

Processor
4

int main(int argc,char **argv)
{

}

foo(x) bar(y) baz(z)

Mental Models

The “Undergrad Model”

Processor
1

Processor
2

Processor
3

Processor
4

int main(int argc,char **argv)
{

}

foo(x) bar(y) baz(z)

What is a ?work unit

Mental Models

Mental Models

L1 Cache hit: ~1-3 cycles

L2 Cache hit: 10s of cycles

Main Memory Access: 100s of cycles

Mental Models

L1 Cache hit: ~1-3 cycles

L2 Cache hit: 10s of cycles

Main Memory Access: 100s of cycles

Cloud Access: Many many many
many many cycles

Mental Models

L1 Cache hit: ~1-3 cycles

L2 Cache hit: 10s of cycles

Main Memory Access: 100s of cycles

Cloud Access: Many many many
many many cycles

deadlock

livelock

starvation state conflicts

load
balancing

Mental Models

L1 Cache hit: ~1-3 cycles

L2 Cache hit: 10s of cycles

Main Memory Access: 100s of cycles

Cloud Access: Many many many
many many cycles

deadlock

livelock

starvation state conflicts

load
balancing

branch
misprediction

Schedule Data, Not Code

Schedule Data, Not Code

What if we pick up the other end of the stick?

Schedule Data, Not Code

What if we pick up the other end of the stick?

Schedule Data, Not Code

What if we pick up the other end of the stick?

Processor
1

Processor
2

Processor
3

Processor
4

int main(int argc,char **argv)
{

}

foo(x)

bar(y)

baz(z)

Schedule Data, Not Code

Processor
1

Processor
2

Processor
3

Processor
4

int main(int argc,char **argv)
{

}

Schedule Data, Not Code

x y z

Data is in Collections

Code is static

Data is dynamic

Data is in Collections

Code is static

Data is dynamic

But data never travels alone.

Data is in Collections

Code is static

Data is dynamic

almost always
generally

But data never travels alone.
rarely

Data is in Collections

Code is static

Data is dynamic

almost always
generally

But data never travels alone.
rarely

It comes in collections.

Data is in Collections

Code is static

Data is dynamic

almost always
generally

But data never travels alone.
rarely

It comes in collections.
We rarely use a whole collection at once.

Collections

Collections

What is a work unit?

Collections

What is a work unit?

The smallest set of subcollections needed for
processing in making forward progress in the

application.

Experience

Realization

Mental Models

Argument

Experience

Realization

Mental Models

Argument

Realization Problems

Realization Problems

How do we efficiently deal with sub-collections?

Realization Problems

How do we efficiently deal with sub-collections?

How do we structure programs?

Realization Problems

How do we efficiently deal with sub-collections?

How do we structure programs?

How do we derive schedules?

Synchronization via Scheduling (SvS)

Basic Idea:

Basic Method:

Synchronization via Scheduling (SvS)

Basic Idea:
Know what data a task is going
to access before it executes and

use this information to make
scheduling decisions.

Basic Method:

Synchronization via Scheduling (SvS)

Basic Idea:
Know what data a task is going
to access before it executes and

use this information to make
scheduling decisions.

Basic Method:
Derive a compact representation
(a single bit string) of the ‘space’

of potential access for quick
comparisons during scheduling.

Software Patterns (IMR)

Software Patterns (IMR)

Isolate

Software Patterns (IMR)

Isolate

Modify

Software Patterns (IMR)

Isolate

Modify

Release

Software Patterns (IMR)

Isolate

Modify

Release

Software Patterns (IMR)

Isolate

Modify

Release

Stencil Patterns

Software Patterns (IMR)

Isolate

Modify

Release

Stencil Patterns

List modification

Software Patterns (IMR)

Isolate

Modify

Release

Stencil Patterns

List modification

Tree Modification

Software Patterns (IMR)

Isolate

Modify

Release

Stencil Patterns

List modification

Tree Modification

Graph Modification

Software Patterns (IMR)

Isolate

Modify

Release

Stencil Patterns

List modification

Tree Modification

Graph Modification

... more

Programming Support

Programming Support

‘First class’ collections

Programming Support

Actor Model

‘First class’ collections

Programming Support

Actor Model + Messages

‘First class’ collections

Programming Support

Actor Model + Messages + Queries

‘First class’ collections

Experience

Realization

Mental Models

Argument

Experience

Realization

Mental Models

Argument

Experiments: spatialDictionary

Experiments: spatialDictionary

Experiments: spatialDictionary

Global Lock Progressive Lock
SvS SvS Cached

Experiments: spatialDictionary

0

7.5

15.0

22.5

30.0

1 2 4 8 16
Global Lock Progressive Lock
SvS SvS Cached

Experiments: spatialDictionary

0

7.5

15.0

22.5

30.0

1 2 4 8 16
Global Lock Progressive Lock
SvS SvS Cached

Experiments: spatialDictionary

0

7.5

15.0

22.5

30.0

1 2 4 8 16
Global Lock Progressive Lock
SvS SvS Cached

Experiments: spatialDictionary

0

7.5

15.0

22.5

30.0

1 2 4 8 16
Global Lock Progressive Lock
SvS SvS Cached

Experiments: spatialDictionary

0

7.5

15.0

22.5

30.0

1 2 4 8 16
Global Lock Progressive Lock
SvS SvS Cached

Future Work

Future Work

Optimized scheduling

Future Work

Optimized scheduling

Robust query support

Questions

Questions

Thanks to

Anonymous reviewers

Gaslamp Games

SvS - Signatures

SvS - Signatures

0 0 0 0 0 0 0

SvS - Signatures

0 0 0 0 0 01

SvS - Signatures

SvS - Signatures

composable

SvS - Signatures

composable

quick to compute
and compare

SvS - Signatures

composable

quick to compute
and compare

only false positives for
intersection

SvS - Signatures

composable

quick to compute
and compare

only false positives for
intersection

easy to make arbitrarily
precise

SvS - Signatures

composable

quick to compute
and compare

separate evaluation of data
items from synchronization

only false positives for
intersection

easy to make arbitrarily
precise

Preliminary Stuff

Preliminary Stuff

inXspan(int x, int s) : Cell I [| I.x - x | <= s]
inYspan(int y, int s) : Cell I [| I.y - y | <= s]

inRadius(ivec2 C, int r) : Cell I [inXspan<C> (C.x, r) and
inYspan<C>(C.y, r)]

Super preliminary warning!

