
Preemptive, Low Latency Datacenter Scheduling
via Lightweight Virtualization  

Wei Chen, Jia Rao*, and Xiaobo Zhou
University of Colorado, Colorado Springs

* University of Texas at Arlington

Data Center Computing

• Challenges
- Increase hardware utilization and efficiency
-Meet SLOs

• Heterogeneous workloads
- Diverse resource demands

✓ Short jobs v.s. long jobs

- Different QoS requirements
✓ Latency v.s. throughput

Data Center Computing

• Challenges
- Increase hardware utilization and efficiency
-Meet SLOs

• Heterogeneous workloads
- Diverse resource demands

✓ Short jobs v.s. long jobs

- Different QoS requirements
✓ Latency v.s. throughput

Long jobs help improve hardware
utilization while short jobs are

important to QoS

Data Center Trace Analysis

Google traces (https://github.com/google/cluster-data)

10% long jobs account
for 80% resource usage

Tasks are evicted if encountering
resource shortage

Data Center Trace Analysis

Google traces (https://github.com/google/cluster-data)

10% long jobs account
for 80% resource usage

Short jobs have higher priority and most
preempted (evicted) tasks belong to long jobs

Tasks are evicted if encountering
resource shortage

Overhead of Kill-based Preemption

Spark

0

0.25

0.5

0.75

1

Pagerank Kmeans Bayes Wordcount Terasort

0.620.58

0.76
0.870.91

 MapReduce

0

0.18

0.35

0.53

0.7

Wordcount Grep RandWrite Terasort SelfJoin

0.69

0.57

0.43

0.09
0.12

1. MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs

No
rm

al
ize

d
slo

wd
ow

n

No
rm

al
ize

d
slo

wd
ow

n

Map-heavy Reduce-heavy

Our Approach

• Container-based task preemption
- Containerize tasks using docker and control resource via cgroup

- Task preemption without losing the execution progress

✓ Suspension: reclaim resources from a preempted task

✓ Resumption: re-activate a task by restoring its resource

• Preemptive fair share scheduler
- Augment the capacity scheduler in YARN with preemptive task scheduling and

fine-grained resource reclamation

Related Work

• Optimizations for heterogeneous workloads
- YARN [SoCC’13]: kill long jobs if needed

- Sparrow [SOSP’13]: decentralized scheduler for short jobs
- Hawk [ATC’15]: hybrid scheduler based on reservation

• Task preemption
- Natjam [SoCC’13], Amoeba [SoCC’12]: proactive checkpointing

- CRIU [Middleware’15]: on-demand checkpointing

• Task containerization
- Google Borg [EuroSys’15]: mainly for task isolation

Long job slowdown and resource waste ✘

No mechanism for preemption✘

Hard to determine optimal reservation✘

Hard to decide frequency✘

Application changes required✘

Still kill-based preemption✘

Related Work

• Optimizations for heterogeneous workloads
- YARN [SoCC’13]: kill long jobs if needed

- Sparrow [SOSP’13]: decentralized scheduler for short jobs
- Hawk [ATC’15]: hybrid scheduler based on reservation

• Task preemption
- Natjam [SoCC’13], Amoeba [SoCC’12]: proactive checkpointing

- CRIU [Middleware’15]: on-demand checkpointing

• Task containerization
- Google Borg [EuroSys’15]: mainly for task isolation

Long job slowdown and resource waste ✘

No mechanism for preemption✘

Hard to determine optimal reservation✘

Hard to decide frequency✘

Application changes required✘

Still kill-based preemption✘

If short jobs can timely preempt long jobs
✓ No need for cluster reservation
✓ Preserving long job’s progress
✓ Application agnostic
✓ Fine-grained resource management

Container-based Task Preemption

• Task containerization
- Launch tasks in Docker containers

- Use cgroup to control resource allocation, i.e., CPU and memory

• Task suspension
- Stop task execution: deprive task of CPU

- Save task context: reclaim container memory and write dirty memory pages onto disk

• Task resumption
- Restore task resources

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Reclaim
memory

Restore
memory

Deprive
CPU

Restore CPU & memory

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Reclaim
memory

Restore
memory

Deprive
CPU

Restore CPU & memory

Suspended task is alive, but does not
make progress or affect other tasks

Two Types of Preemption

•

BIG-C: Preemptive Cluster Scheduling

NodeNode

Resource Manager

Resource
Monitor Scheduler

Preemption
Decision

Request

La
un

ch
Rele

as
e

Heartbeat

Node

Node Manager

Task Container
Allocator

Launch

Container
Monitor

S/R

Application
Master

• Container allocator
- Replaces YARN’s nominal

container with docker

• Container monitor
- Performs container suspend and

resume (S/R) operations

• Resource monitor & Scheduler
- Determine how much resource

and which container to preempt

Source code available at https://github.com/yncxcw/big-c

https://github.com/yncxcw/big-c
https://github.com/yncxcw/big-c
https://github.com/yncxcw/big-c

YARN’s Capacity Scheduler

Capacity
scheduler

Cluster
resource

task

task

…

task

task

…

DRF

Work conserving, use more than
fair share if rsc is available

YARN’s Capacity Scheduler

Capacity
scheduler

Cluster
resource

task

task

…

task

task

…

DRF

Work conserving, use more than
fair share if rsc is available

YARN’s Capacity Scheduler

Capacity
scheduler

Cluster
resource

task

task

…

task

task

…

DRF

✘

Work conserving, use more than
fair share if rsc is available

YARN’s Capacity Scheduler

Capacity
scheduler

Cluster
resource

task

task

…

task

task

…

DRF

✘

Work conserving, use more than
fair share if rsc is available

• At least kill one long
task

• Rsc reclamation does not
enforce DRF

Preemptive Fair Share Scheduler

Preemptive
fair sharing

Cluster
resource

task

task

…

task

task

…

DRF

Work conserving, use more than
fair share if rsc is available

Capacity scheduler

VOID

Preemptive Fair Share Scheduler

Preemptive
fair sharing

Cluster
resource

task

task

…

task

task

…

DRF

Work conserving, use more than
fair share if rsc is available

Capacity scheduler

VOID

Preemptive Fair Share Scheduler

Preemptive
fair sharing

Cluster
resource

task

task

…

task

task

…

DRF

Work conserving, use more than
fair share if rsc is available

Capacity scheduler

VOID

Preemptive Fair Share Scheduler

Preemptive
fair sharing

Cluster
resource

task

task

…

task

task

…

DRF

 Work conserving, use more than
fair share if rsc is available

• Preempt part of task
rsc

Capacity scheduler

VOID

• Enforce DRF, avoid unnecessary
reclamation

Compute DR at Task Preemption

•

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

Compute DR at Task Preemption

•

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

Container Preemption Algorithm

Choose a container c from
the preempted job

Choose a job with the
longest remaining time

Yes

No

No

END

Yes

Container Preemption Algorithm

Choose a container c from
the preempted job

Choose a job with the
longest remaining time

Yes

No

No

END

Yes

Optimizations

• Disable speculative execution of preempted tasks
- Suspended tasks appear to be slow to the cluster manager and will likely trigger

futile speculative execution

• Delayed task resubmission
- Tasks may be resubmitted immediately after preemption, causing them to be

suspended again. A suspended task is required to perform D attempts before it is
re-admitted

Experimental Settings

• Hardware
- 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

• Software
- Hadoop-2.7.1, Docker-1.12.1

• Cluster configuration
- Two queues: 95% and 5% shares for short and long jobs queues, respectively
- Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
- Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs

Synthetic Workloads

High, low, and multiple bursts of short jobs.
Long jobs persistently utilize 80% of cluster capacity

Time (S)

Cl
us

te
r u

til
iz

at
io

n
(%

)

Short Job Latency with Spark

• FIFO is the worst due to the inability to preempt long jobs

• Reserve underperforms due to lack of reserved capacity under high-load

• GP is better than IP due to less resource reclamation time or swapping

JCT (S) JCT (S) JCT (S)

CD
F

Low-load High-load Multi-load

Performance of Long Spark Jobs

• FIFO is the reference performance for long jobs
• GP achieves on average 60% improvement over Kill.
• IP incurs significant overhead to Spark jobs:

- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress

FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP FIFO Reserve Kill IP GP

JC
T

(s
)

Low-load High-load Multi-load

Short Job Latency with MapReduce

• FIFO (not shown) incurs 15-20 mins slowdown to short jobs

• Re-submissions of killed MapReduce jobs block short jobs

• IP and GP achieve similar performance

Low-load High-load Multi-load

CD
F

JCT (S) JCT (S) JCT (S)

Performance of Long MapReduce Jobs

• Kill performs well for map-heavy workloads
• IP and GP show similar performance for MapReduce workloads

- MapReduce tasks are loosely coupled
- A suspended task does not stop the entire job

Map-heavy Reduce-heavy
No

rm
al

ize
d

JC
T

(s
)

Wordcount Terasosrt

Low-load High-load Multi-load Low-load High-load Multi-load

Google Trace
Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

Time (S)

Cl
us

te
r u

til
iz

at
io

n
(%

)

Google Trace
Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

Time (S)

Cl
us

te
r u

til
iz

at
io

n
(%

)

• IP and GP guarantee short job latency
• GP improved the 90th percentile long job runtime by 67%,

37% and 32% over kill, IP, and Reserve, respectively
• 23% long jobs failed with kill-based preemption while BIG-C

cause NO job failures.

Summary

• Data-intensive cluster computing lacks an efficient mechanism for task preemption
- Task killing incurs significant slowdowns or failures to preempted jobs

• BIG-C is a simple yet effective approach to enable preemptive cluster scheduling
- lightweight virtualization helps to containerize tasks

- Task preemption is achieved through precise resource management

• Results:
- BIG-C maintains short job latency close to reservation-based scheduling while achieving similar

long job performance compared to FIFO scheduling

