Preemptive, Low Latency Datacenter Scheduling
via Lightweight Virtualization

Wei Chen, Jia Rao*, and Xiaobo Zhou
University of Colorado, Colorado Springs
* University of Texas at Arlington

University of Colorado N e
WSS Coiorado Springs g LEXAS

Data Center Computing

» Challenges
— Increase hardware utilization and efficiency
— Meet SLOs

 Heterogeneous workloads
— Diverse resource demands

v Short jobs v.s. long jobs
— Different QoS requirements

v Latency v.s. throughput

Data Center Computing

» Challenges
— Increase hardware utilization and efficiency
— Meet SLOs

 Heterogeneous workloads

- Diverse resource demands Long jobs help improve hardware

v Short jobs v.s. long jobs utilization while short jobs are
- Different QoS requirements important to QoS

v Latency v.s. throughput

CDF

1.0

Data Center Trace Analysis

Distribution of JCT

081

06}

0.0

10!

Job completion time (s)
10% long jobs account
for 80% resource usage

100}

of tasks (K)

80 |-

w
o
T

ey
o
T

mmm Submission

Eviction

Task event statistics

f
0 10

30 40

Time (h)

Tasks are evicted if encountering
resource shortage

Google traces (https:/github.com/google/cluster-data)

50

1.0

CDF

02 b]

0.0

10!

Data Center Trace Analysis

Distribution of JCT

08 L oo] .

06}

Job completion time (s)
10% long jobs account
for 80% resource usage

100}

of tasks (K)

80 |-

w
o
T

ey
o
T

mmm Submission

Eviction

Task event statistics

10]

f
0 10

30 40 50

Time (h)

Tasks are evicted if encountering
resource shortage

Short jobs have higher priority and most
preempted (evicted) tasks belong to long jobs

Google traces (https:/github.com/google/cluster-data)

Overhead of Kill-based Preemption

MapReduce
Spark 0.7 0.69
— —
% %D . 0.57
_g75 _g 0.43
o o
Do vD.35
'CJ g]
<D} B}
N N
.25 @18 0.12
s -]
2 o 2 . []
Pagerank Kmeans Bayes Wordcount Terasort ‘/ordcount WI rﬁanderte T m
Map-heavy Reduce-heavy

1. MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs

Our Approach

« Container-based task preemption
— Containerize tasks using docker and control resource via cgroup
— Task preemption without losing the execution progress
v Suspension: reclaim resources from a preempted task

v Resumption: re-activate a task by restoring its resource

* Preemptive fair share scheduler

— Augment the capacity scheduler in YARN with preemptive task scheduling and

fine-grained resource reclamation

Related Work

 Optimizations for heterogeneous workloads
— YARN [SoCC'"13]: kill long jobs if needed Long job slowdown and resource waste X
— Sparrow [SOSP'13]: decentralized scheduler for short jobs No mechanism for preemptionX

— Hawk [ATC'15]: hybrid scheduler based on reservation Hard to determine optimal reservationX

* Task preemption
— Natjam [SoCC'13], Amoeba [SoCC'12]: proactive checkpointing Hard to decide frequencyX
— CRIU [Middleware"15]: on-demand checkpointing Application changes requiredX

 Task containerization
— Google Borg [EuroSys'15]: mainly for task isolation Still kill-based preemptionX

Related Work

 Optimizations for heterogeneous workloads
— YARN [SoCC'"13]: kill long jobs if needed Long job slowdown and resource waste X

- Sparrow [SOSP'|£ short jobs can timely preempt long jobs "™ o PreemptionX

- Hawk [ATC'15]:t v No need for cluster reservation line optimal reservationX
. Task preempti0|‘/ Preserving long job's progress
v Application agnostic

- Natjam [SoCCV // Fine-grained resource management
— CRIU [Middleware"15]: on-demand checkpointing Application changes requiredX

ird to decide frequencyX

 Task containerization
— Google Borg [EuroSys'15]: mainly for task isolation Still kill-based preemptionX

Container-based Task Preemption

» Task containerization
— Launch tasks in Docker containers

— Use cgroup to control resource allocation, i.e., CPU and memory

» Task suspension
— Stop task execution: deprive task of CPU

— Save task context: reclaim container memory and write dirty memory pages onto disk

* Task resumption

— Restore task resources

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

| Me[mory usage

\ Reclaim
§ memow

Restore
memory]

50

100 150 200

Time (s)

250

300

Disk read/write (MB/s)

N
w
o

N
o
o

Swapplng actrvrty

| XXX read
| OOo write
|

Deprlve Restore CPU & memory

Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU

Time (s)

| Memory usage D Swapplng act|V|ty
‘ | ‘ x ‘ ‘ | XXX read
| | oOo write
Suspended task is alive, but does not SRR SO o st
Recla|m make progress or affect other tasks - ?
memory : | = B “Deprive Restore CPU&memory
... Restore E - I@ CPU \'\
1 \ O © - o
; o B
1 1 1 ;] -('L) 0
0 50 100 150 200 250 300 D

Two Types of Preemption

* Immediate preemption (IP)
— Reclaims all resources of a preempted task in one pass
— Pros: simple, fast reclamation

— Cons: may reclaim more than needed, incur swapping, and cause long reclamation

« Graceful preemption (GP)
— Shrinks a preempted task and reclaims its resources in multiple passes, at a step of 7 =(c, m)
— Pros: fine-grained reclamation, avoid swapping

— Cons: complicated, slow reclamation, tuning of step r needed

BIG-C: Preemptive Cluster Scheduling

e Container allocator

, , Resource Manager A P
— Replaces YARN's nominal reemptor /,ea%e / :
container with docker Resource | JECBION| o\ qiier | [V, Launc
Monitor Sl l
 Container monitor N % - Task
— Performs container suspend and '%90
(S
resume (S/R) operations ks

* Resource monitor & Scheduler

— Determine how much resource

and which container to preempt

Container
Allocator

Node Manager

\\

S/R
! Container
Monitor /

Application
Master

it

Source code available at https://github.com/yncxcw/big-c

https://github.com/yncxcw/big-c
https://github.com/yncxcw/big-c
https://github.com/yncxcw/big-c

YARN's Capacity Scheduler

/@\

- J
4 \
- J

Cluster
resource

v
\ ,D_RE / =
A (/’—C<apa\é|tyy \)\ =
. scheduler Dl

& - \

Work conserving, use more than
fair share if rsc is available

YARN's Capacity Scheduler

/@\

Cluster
resource

v
\ ,D_RE / =
A (/’—C<apa\é|tyy \)\ =
. scheduler Dl

v\ - \

Work conserving, use more than
fair share if rsc is available

YARN's Capacity Scheduler

Cluster
resource

v
\ ,D_RE / =
A (/’—C<apa\é|tyy \)\ =
. scheduler Dl

v\ - \

Work conserving, use more than
fair share if rsc is available

YARN's Capacity Scheduler

: long job demand
: longjob fair share

a: over-provisioned rsc

: short job demand

rsc to preempt

a=71,-f,

task

e Rscreclamation does not

enforce DRF

K
r, * Atleastkill one long

/@\

%

\ PRSP
=) A

Work conserving, use more than Cluster
fair share if rsc is available resource

_(Capacity P
scheduler -~

\/V eI
\ =n

}—

Preemptive Fair Share Scheduler

4 CE&Q)

- %
4 ‘\
- J

Cluster
resource

Work conserving, use more than
fair share if rsc is available

DRF /v

o — —

—-——~< g >

_(" Preemptive >

\A
- \

v’: falrsharlng -7

TTTheT ~\\\\\\~

Preemptive Fair Share Scheduler

4 CE&Q)

Cluster
resource

Work conserving, use more than
fair share if rsc is available

DRF /v

o — —

—-——~< g >

_(" Preemptive >

\A
- \

v’: falrsharlng -7

TTTheT ~\\\\\\~

Preemptive Fair Share Scheduler

4 C§§Q)
%g%

Cluster
resource

Work conserving, use more than
fair share if rsc is available

DRF

o — —

\A _Preemptive)

v’: falrsharlng -7

TTTheT ~\\\\\\~

Preemptive Fair Share Scheduler

. 4 I
T;: long job demand @ Work conserving, use more than Cluster
fi: longjob fair share fair share if rsc is available resource

a: over-provisionedrsc /
£ ne 7 —D

r,. shortjob demand :
p: rsc to preempt) DRF / =
i=7-f, - / \A (’P—réér%ptlve \> =

. _ fair sharlng
If 7,

fa_‘ . Preemptpartoftasl(\/ - ———N___-"-
p-r rsc @

§ = ComputeDR(F; @) —
 Enforce DRF, avoid unnecessary : =

reclamation

}—

-)

Compute DR at Task Preemption

If ¥.= <20CPU,10GB) and a= <10CPU,15GB) , whatis p ?

S

T a p

*« Capacity scheduler
p= (10CPU,10GB)

=

 Preemptive fair sharing

10GB

) a
p= (10CPU, 5= x10GB)
= (10CPU,5GB) —
CPU

=
%

Compute DR at Task Preemption

If .= (20CPU,10GB) and a= {10CPU,15GB) , whatis p?

S

T p
. , 1, is the total demand of many
» Capacity scheduler small tasks, which may not be
. |—> able to fully use T0GB mem
p= (10CPU,10GB) CPU since CPU is not fully satisfied

 Preemptive fair sharing

10GB p

p= (10CPU, 2OCPU><10GB> |
Memory reclamationis in
= (10CPU,5GB) |_> proportionto the reclaimed
CPU CPU accordingto 7,

Container Preemption Algorithm

Choose a job with the
longest remaining time

Yes

No
Choose a container ¢ from

the preempted job END

Reclaim resource r from
container c. Freeze ¢ if
swapping

Container Preemption Algorithm

Choose a job with the

longest remaining time Ves
Immediate preemption (IP)
suspends a container and

job has reclaimsits entire resource,,
; No Graceful preemption (GP) shrinks
Cho?see Srggmsgzrjggrom a container and reclainﬁits
END resource at a step of r.,. GP

l reclaims resources from multiple
L tasks (containers) and jobs.

Reclaim resource r from
container c. Freeze ¢ if
swapping

Optimizations

* Disable speculative execution of preempted tasks
— Suspended tasks appear to be slow to the cluster manager and will likely trigger
futile speculative execution
* Delayed task resubmission

— Tasks may be resubmitted immediately after preemption, causing them to be
suspended again. A suspended task is required to perform D attempts before it is
re-admitted

Experimental Settings

 Hardware
— 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

» Software
— Hadoop-2.7.1, Docker-1.12.1

» Cluster configuration
— Two queues: 95% and 5% shares for short and long jobs queues, respectively
— Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
— Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs

Cluster utilization (%)

Synthetic Workloads

100 f T
m— |ow-load | | . Y ‘
80 + High-load | = ,.._:1"-..""’.-‘._:"'__-' “ B S R
lllllll Multi-load | S i e ?1_“
60! 2 E
20 i
% 200 400 600 800 1000
Time (S)
High, low, and bursts of short jobs.

Long jobs persistently utilize 80% of cluster capacity

CDF

| ow-load

Short Job Latency with Spark

1.0 Ay
0.8 =
0.6 -
0.4l FIFO |

» Reserve

S Y Kill

0.2} : P

 GP
0.0 * 1 i

0 50 100 150 200 250

1.0

o8l . 3
0.6l

04l

0.0

02l §

FIFO

» Reserve

Kill
IP
GP

0 50 100 150 200 250 300 350

JCT (8)

1.0
0.8L 5;:” B 4
0.6 =
0.4 FIFO |
» Reserve
||||||| K|“
0.2} —_ P
: i GP
0.0 €

Multi-load

0

« FIFO is the worst due to the inability to preempt long jobs

50 100 150 200 250

JCT (8)

« Reserve underperforms due to lack of reserved capacity under high-load

« GPis better than IP due to less resource reclamation time or swapping

JCT (s)

3500

3000}~

Performance of Long Spark Jobs
'High-load

Low-load

@ 50th long jobs
B °0th long jobs

2500}

2000}F

1500}

1000+ -

500

o

]

FIFO Reserve Kill IP GP

« FIFO is the reference performance for long jobs

3500

1 3000+

4 2500
1 1500+

ﬂ

1000+

500

0

FIFO Reserve Kill

@3 50th long jobs
EE 90th long jobs |]

12000}

]

+4 1500¢ -

+4 1000+ -

IP

GP

Multi-load

3500

@3 50th long jobs
3000} -

|l 90th long jobs |]

1 2500}

12000} .

FIFO Reserve Kill IP GP

« (P achieves on average 60% improvement over Kill.

« P incurs significant overhead to Spark jobs:
- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress

CDF

Low-loa High-load Multi-load
1.0 : : 1.0 , : L 1.0 ¢ AT
0.8} 0.8 0.8}
0.6f % ::: 1 o6l \::] ol ::::
$ =« Reserve $ =: Reserve =+ Reserve
....... Kill q s we Kl wn Kl
0.2} —_ P 0.2} S 0.2} —_ P
‘ GP GP : GP
0.0 K& i i ; 0.0 j i 1 i ; 0.0L—=" s j i ; . i
0 50 100 150 200 250 O 50 100 150 200 250 300 350 "0 50 100150200250300350400

Short Job Latency with MapReduce

JCT (8)

JCT (S)

JCT (8)

 FIFO (not shown) incurs 15-20 mins slowdown to short jobs

« Re-submissions of killed MapReduce jobs block short jobs

« [P and GP achieve similar performance

Normalized JCT (s)

Performance of Long MapReduce Jobs

1.4

Map-heavy

Wordcount

1.0

0.8}

0.6

0.4

0.2

0.0

LoW-Ioad

Higjh-load Mlulti-load

2.0

1.5

Reduce-heavy

Terasosrt

] Reserve
3 Kill
B P
m GP

ol L
Low-load High-load Multi-load

Kill performs well for map-heavy workloads

IP and GP show similar performance for MapReduce workloads

MapReduce tasks are loosely coupled
A suspended task does not stop the entire job

=
N
o

Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

. — Short JObS utlllzatlon ,
: : » Long jobs utilization

100+

(00)
o

IS
o

Cluster utilization (%
N (e)}
]O o

o

@
4000 800 12000 16000

Google Trace

Contains 2202 jobs, of which 2020 are classified as short jobs and 182 as
long jobs.

—~ 120 | | ~--=-i-b- - lization |-
& 100 |P and GP guarantee short job latency lization
S « GP improved the 90th percentile long job runtime by 67%,
= 80/ - o . .
N #37% and 32% over kill, IP and Reserve, respectively
> =« 23% long jobs failed with kill-based preemption while BIG-C
% cause NO job failures. .
O
0" 4000 8000 12000 16000

Summary

« Data-intensive cluster computing lacks an efficient mechanism for task preemption

— Task killing incurs significant slowdowns or failures to preempted jobs

* BIG-C is a simple yet effective approach to enable preemptive cluster scheduling
— lightweight virtualization helps to containerize tasks

— Task preemption is achieved through precise resource management

e Results:

— BIG-C maintains short job latency close to reservation-based scheduling while achieving similar
long job performance compared to FIFO scheduling

