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Data Center Computing

» Challenges
— Increase hardware utilization and efficiency
— Meet SLOs

 Heterogeneous workloads
— Diverse resource demands

v Short jobs v.s. long jobs
— Different QoS requirements

v Latency v.s. throughput
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— Increase hardware utilization and efficiency
— Meet SLOs

 Heterogeneous workloads

- Diverse resource demands Long jobs help improve hardware

v Short jobs v.s. long jobs utilization while short jobs are
- Different QoS requirements important to QoS
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Overhead of Kill-based Preemption
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1. MapReduce jobs experience various degrees of slowdowns

2. Spark jobs suffer from more slowdowns due to frequent inter-task

synchronization and the re-computation of failed RDDs



Our Approach

« Container-based task preemption
— Containerize tasks using docker and control resource via cgroup
— Task preemption without losing the execution progress
v Suspension: reclaim resources from a preempted task

v Resumption: re-activate a task by restoring its resource

* Preemptive fair share scheduler

— Augment the capacity scheduler in YARN with preemptive task scheduling and

fine-grained resource reclamation



Related Work

 Optimizations for heterogeneous workloads
— YARN [SoCC'"13]: kill long jobs if needed Long job slowdown and resource waste X
— Sparrow [SOSP'13]: decentralized scheduler for short jobs No mechanism for preemptionX

— Hawk [ATC'15]: hybrid scheduler based on reservation  Hard to determine optimal reservationX

* Task preemption
— Natjam [SoCC'13], Amoeba [SoCC'12]: proactive checkpointing Hard to decide frequencyX
— CRIU [Middleware"15]: on-demand checkpointing Application changes requiredX

 Task containerization
— Google Borg [EuroSys'15]: mainly for task isolation Still kill-based preemptionX
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Container-based Task Preemption

» Task containerization
— Launch tasks in Docker containers

— Use cgroup to control resource allocation, i.e., CPU and memory

» Task suspension
— Stop task execution: deprive task of CPU

— Save task context: reclaim container memory and write dirty memory pages onto disk

* Task resumption

— Restore task resources



Task Suspension and Resumption
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Task Suspension and Resumption

Keep a minimum footprint for a preempted task: 64MB memory and 1% CPU
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Two Types of Preemption

* Immediate preemption (IP)
— Reclaims all resources of a preempted task in one pass
— Pros: simple, fast reclamation

— Cons: may reclaim more than needed, incur swapping, and cause long reclamation

« Graceful preemption (GP)
— Shrinks a preempted task and reclaims its resources in multiple passes, at a step of 7 =(c, m)
— Pros: fine-grained reclamation, avoid swapping

— Cons: complicated, slow reclamation, tuning of step r needed



BIG-C: Preemptive Cluster Scheduling
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Source code available at https://github.com/yncxcw/big-c



https://github.com/yncxcw/big-c
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YARN's Capacity Scheduler
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Preemptive Fair Share Scheduler

4 CE&Q )

- %
4 ‘\
- J

Cluster
resource

Work conserving, use more than
fair share if rsc is available

DRF /v

o — —

—-——~< g >

_(" Preemptive >

\A
- \

v’: falrsharlng -7

TTTheT ~\\\\\\~




Preemptive Fair Share Scheduler

4 CE&Q )

Cluster
resource

Work conserving, use more than
fair share if rsc is available

DRF /v

o — —

—-——~< g >

_(" Preemptive >

\A
- \

v’: falrsharlng -7

TTTheT ~\\\\\\~




Preemptive Fair Share Scheduler
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Preemptive Fair Share Scheduler
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Compute DR at Task Preemption
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Compute DR at Task Preemption
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Container Preemption Algorithm
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Container Preemption Algorithm

Choose a job with the

longest remaining time Ves
Immediate preemption (IP)
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Optimizations

* Disable speculative execution of preempted tasks
— Suspended tasks appear to be slow to the cluster manager and will likely trigger
futile speculative execution
* Delayed task resubmission

— Tasks may be resubmitted immediately after preemption, causing them to be
suspended again. A suspended task is required to perform D attempts before it is
re-admitted



Experimental Settings

 Hardware
— 26-node cluster; 32 cores, 128GB on each node; 10Gbps Ethernet, RAID-5 HDDs

» Software
— Hadoop-2.7.1, Docker-1.12.1

» Cluster configuration
— Two queues: 95% and 5% shares for short and long jobs queues, respectively
— Schedulers: FIFO (no preemption), Reserve (60% capacity for short jobs), Kill, IP and GP
— Workloads: Spark-SQL as short jobs and HiBench benchmarks as long jobs
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« GPis better than IP due to less resource reclamation time or swapping
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« (P achieves on average 60% improvement over Kill.

« P incurs significant overhead to Spark jobs:
- aggressive resource reclamation causes system-wide swapping
- completely suspended tasks impede overall job progress
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Short Job Latency with MapReduce
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 FIFO (not shown) incurs 15-20 mins slowdown to short jobs

« Re-submissions of killed MapReduce jobs block short jobs

« [P and GP achieve similar performance
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Kill performs well for map-heavy workloads

IP and GP show similar performance for MapReduce workloads

MapReduce tasks are loosely coupled
A suspended task does not stop the entire job
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Summary

« Data-intensive cluster computing lacks an efficient mechanism for task preemption

— Task killing incurs significant slowdowns or failures to preempted jobs

* BIG-C is a simple yet effective approach to enable preemptive cluster scheduling
— lightweight virtualization helps to containerize tasks

— Task preemption is achieved through precise resource management

e Results:

— BIG-C maintains short job latency close to reservation-based scheduling while achieving similar
long job performance compared to FIFO scheduling



