&Egﬁﬁ{ékj * USENIX ATC’22 Best Paper Award! *

Co-opting Linux Processes for High-
Performance Network Simulation

Rob Jansen, U.S. Naval Research Laboratory
Jim Newsome, Tor Project
Ryan Wails, Georgetown University & U.S. Naval Research Laboratory

Rob Jansen, Ph.D.
Computer Security Research Scientist USENIX Annual Technical Conference

Center for High Assurance Computer Systems Carlsbad, CA, USA
U.S. Naval Research Laboratory July 11t 2022

U.S.NAVAL _ ' shadow on github
R SORATORY VI ETH R ELCEVENVS N ke I

shadow.github.io

Designed a new, hybrid network simulator/emulator o 2.3X faster than Shadow v1

* Cco-opts Linux processes into a discrete-event
network simulation that emulates kernel functionality

* enables large-scale, distributed system experiments

¢ 3.4 X faster than NS-3
o 43X faster than gRalL [ToN’19]

103 Hosts
103 - 975.3

0 :
® e
G
| = 2
£ 107 3
= 107
4

1226

75.9
50.6

« Merged into the open-source Shadow project and
synonymous with Shadow v2

o Artifacts: https://netsim-atc2022.github.io

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 2

pmm%\‘ﬁ‘ad@“ 052 ga

https://netsim-atc2022.github.io/

Outline

motivation
design
evaluation

‘ U.S.NAVAL \
ESEARC

CABORATORY Requirements for Large Distributed System Experimentation

* Important properties of test networks: Controllable

« Controllable: isolate important factors

* Replicable: identically replicate experiments
(determinism) Scalable

Replicable

* Requirements for large distributed systems: Accurate
« Accurate: directly execute system software
(not an abstraction)

- Scalable: decouple from time, computational
constraints of host

Our approach

<>

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 4

‘ U.S.NAVAL \
ESEARC

Problems with Traditional Approaches

e Simulation (e.g., ns-3)

* Not realistic: runs abstractions instead of real applications I I S -3

« Hard to maintain and can lead to invalid results
« Emulation (e.g., mininet)

« Not controllable: results will not be identical Mininet > sudomn
 Not scalable: CPU overload = time distortion

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 5

‘ U.S.NAVAL \
ESEARC

Problems with Traditional Approaches

« Simulation (e.g., ns-3)

* Not realistic: runs abstractions instead of real applications I I S -3

« Hard to maintain and can lead to invalid results

« Emulation (e.g., mininet)
 Not controllable: results will not be identical

Mininet >sudomn
 Not scalable: CPU overload = time distortion

x10°
© 2
%) =®-phantom
% mininet Forwarding capacity
3 1 - limited: fewer packets than
: expected are forwarded
D | "

A

CPU overload 01— I | | I |
with >20 hosts 20 40 60 &80 100

Virtual Host Count

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 6

U.S.NAVAL \ : :
S RORATORY Hybrid Architectures and Challenges

Hybrid architecture

* Network simulation, but directly execute application code
* Enjoys advantages of both simulation and emulation
« Best opportunity to scale to large-scale distributed systems

Architecture | Example Tool Scalablllty m

Emulation Mininet X

Simulation NS-3 \/ X \/
—_—— Hybrid This work \/ \/ \/

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 7

‘ U.S.NAVAL \
ESEARC

Limitations of Hybrid Architectures (1)

Executing application code via
plugin (link-map) namespaces
« appid = dimopen(app.so)

« func = dlsym(appid, “main”)
« func()

NS-3-DCE, Shadow

Limitations
« Compatibility (must build PIC/PIE)
« Correctness (intercept libcalls only)
« Maintainability (custom Id, threading)

U.S. Naval Research Laboratory

Co-opting Linux Processes for High-Performance Network Simulation | 8

‘ U.S.NAVAL \
ESEARC

Limitations of Hybrid Architectures (1)

Executing application code via
plugin (link-map) namespaces
« appid = dimopen(app.so)

« func = dlsym(appid, “main”)
« func()

Table 2: Application Properties Supported in Hybrid Simulators

Application Property Shadow Phantom

Multiple threads (e.g., support for pthreads)
Multiple processes (e.g., support for fork)

Not position-independent (i.e., PIC or PIE)

Not dynamically linked to 1ibc

N S -3- D C E : S h ad ow Symbols not exported to dynamic symbol table
System calls made in statically linked code

System calls made in assembly (i.e., avoiding 1ibc)
100% statically linked (e.g., some go programs)

O0O000O0L® e
0000020

Limitations
et) O Does not work in tool or architecture @ Works in tool & architecture
« Com patl blllty (m ust build PIC/PI E) © Not implemented in tool (as of writing) but supported by architecture

« Correctness (intercept libcalls only)
« Maintainability (custom Id, threading)

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 9

UESSE‘A‘\XQL Limitations of Hybrid Architectures (2)

Executing code via Linux processes
« fork() + exec() = ptrace()

3 _
gRalL [ToN’19] 1073
n]

o _ ©] gRalL (on ns-3)

Limitations: ptrace is slow! £ 19 _
: £ 107 1 is 13X slower
 Process control: overnead quadratic S : i 3 4l
in total number of processes o] an Ns-o alone

« Syscall interception: 4 context
switches for every syscall

« Data transfer: extra syscall + mode
change for every word of memory

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 10

‘ U.S.NAVAL \
ESEARC

Our Research Challenge

Can we design a tool with the
performance benefits of a uni-process
plugin-based architecture
AND
the improved modularity and isolation
of a mutli-process architecture?

‘ U.S.NAVAL \
ESEARC

Our Research Challenge

GHALLENGE ACCEPTED

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 12

Outline

motivation
design
evaluation

‘ U.S.NAVAL \
ESEARC

Design Overview

« Discrete-event packet-level « Simulates system call behavior and
network simulator networking

« Directly executes apps as « File descriptors (files, sockets, pipes)
standard Linux processes « Event notification (poll, epoll, select)

. Intercepts all system calls made * Networking (buffers, protocols, ifaces)

by apps and emulates them « DNS and routing (latency, bandwidth)

Syscall Interposition Syscall Interposition

irc . Simulator Controller Process 1pc
- lC-Ihannel Ehannel -<

Emulates time, file descriptors,
Appl networking, i/o events, etc. App2

Process Discrete-Event Network Simulator Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 14

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload

Sim Controller Process

Physical
processors

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 15

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload

Sim Controller Process

Virtual hosts
and processes

Physical
processors

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 16

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload
Sim Controller Process

Virtual hosts
and processes

How many
worker threads
should we run?

Physical
processors

U.S. Naval Research Laboratory

Co-opting Linux Processes for High-Performance Network Simulation | 17

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload

Sim Controller Process » n
slelelalel 1]
| | K K K = — 9 -
o O = 40.5 g
_ & . = - =40 4331 A >
—CEU - . 1.1
How many 8 A
workerthreadi n 0- X0 -
should we run” & \/Q & \/Q
6\\(\@6\ 6\\\696\
S S

0880

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 18

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload

Sim Controller Process

§ § Virtual hosts

and processes
One thread
per host!

Physical
processors

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 19

1. parallel workers
‘ U.S.NAVAL \
ESEARC

Parallel Worker Threads

Goal: efficiently parallelize simulation workload

Sim Controller Process

e Virtual hosts
‘b and processes
One thread
T e 0000000 e per host
Logical processors

1] T T T (avoid CPU
oversubscription)

Physical
processors

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 20

1. parallel workers

U.S.NAVAL
ESEARC Parallel Worker Threads

LABORATORY

Goal: efficiently parallelize simulation workload Thread scheduling:
 Work stealing

Sim Controller Process

Vi « Each LP starts a thread
irtual hosts , _
and processes 1. Runs all assigned events in

current round (1 ms)

2. Set thread to waiting
1000000 1000000 1000000 1000000 per host 3. Starts next waiting thread (if any)
LP Logical processors

01000000 000000 01000000 1000000 (avoid CPU When all threads waiting
oversubscription) — Advance round clock

— Repeat
Physical
processors

Co-opting Linux Processes for High-Performance Network Simulation | 21

U.S. Naval Research Laboratory

‘ U.S.NAVAL \ 2. direct execution
ESEARC

Direct Execution

Sim Controller Process
Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 22

‘ U.S.NAVAL \ 2. direct execution
ESEARC

Direct Execution

1. LD _PRELOAD=shim.so
2. IPC=ipc.shm”
3. vfork() + execvpe()

App Process
Sim Controller Process

Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 23

‘ U.S.NAVAL \ 2. direct execution
ESEARC

Direct Execution

Attach to
“ipc.shm”
for IPC

App Process
Sim Controller Process

Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 24

‘ U.S.NAVAL \ 2. direct execution
ESEARC

Direct Execution

App is running and can
communicate with controller

App Process
IPC Sim Controller Process

Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 25

‘ U.S.NAVAL \
ESEARC

S Sysca" |nterposition 3. syscall interposition

Linked libraries

I_A_\ Linked libraries
Application ‘ ‘
il Controller

Code
Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 26

‘ U.S.NAVAL \
ESEARC

S Sysca" InterpOSitiOn 3. syscall interposition

1. Intercept libcalls
(LD_PRELOAD)

Application
il Controller

Code
Linux Kernel Syscall API

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 27

‘ U.S.NAVAL \
ESEARC

S Sysca" |nterposition 3. syscall interposition

1. Intercept libcalls
(LD_PRELOAD)

Application
il Controller

Code
Linux Kernel Syscall API

2. Intercept syscalls
(seccomp)

Linux Kernel, Devices, Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 28

‘ U.S.NAVAL \
ESEARC

S Sysca" InterpOSitiOn 3. syscall interposition

1. Intercept libcalls
(LD_PRELOAD)

Application
il Controller

Code
Linux Kernel Syscall API

2. Intercept syscalls Linux Kernel, Devices,
(seccomp) Network

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 29

‘ U.S.NAVAL \
ESEARC

S Sysca" InterpOSitiOn 3. syscall interposition

1. Intercept libcalls
(LD_PRELOAD)

o blocking narjosleep nonblocking nanosleep 1k write-Hread
=20 20 20
O 15.34 : 15.26
Application c 13.37
Code = 9.51 9.64 11.13
10 - 10 - v 10 -
x .
T
S 0
f) 0 I 0 1 0 1
C N
2. Intercept syscalls Cqé O@Qo@gcefﬁ Od\QO((\gce‘f’ Od\QO((\goe?e
(seccomp) “ oY C“ el ot ol
£ NN £ W £ W
NG I NI
Oa\o’b Oe\o'b Oe\db
¢ < <

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 30

‘ U.S.NAVAL \
ESEARC

Syscall Emulation

4. syscall emulation

Application
il Controller

Code

Linux Kernel Syscall API

« File descriptors (files, sockets, pipes) Linux Kernel. Devices
« Event notification (poll, epoll, select) Network

« Networking (buffers, protocols, ifaces)
« DNS and routing (latency, bandwidth)

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 31

‘ U.S.NAVAL \
ESEARC

Syscall Emulation

4. syscall emulation

Emulate in Shim
- faster
- for hotpath syscalls (time)

Application
il Controller

Code

Linux Kernel Syscall API
« File descriptors (files, sockets, pipes) Linux Kernel. Devices
« Event notification (poll, epoll, select) Network

« Networking (buffers, protocols, ifaces)
« DNS and routing (latency, bandwidth)

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 32

‘ U.S.NAVAL \
ESEARC

Syscall Emulation

4. syscall emulation

Emulate in Shim

- faster | Emulate in Controller
- for hotpath syscalls (time) - slower (IPC overhead)

- IPC: syscall args/data

Application
Code Controller
IPC
) Code
« File descriptors (files, sockets, pipes) Linux Kernel. Devices
« Event notification (poll, epoll, select) Network

« Networking (buffers, protocols, ifaces)
« DNS and routing (latency, bandwidth)

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 33

‘ “és"éﬁ‘.{éL \ Inter-Process

Communication

LABORATORY

App Process

IPC

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 34

‘ “és"é,’i‘.{éL \ Inter-Process

SNE™N Communication

App Process

shared memory

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 35

‘ “és"é,’i‘.{éL \ Inter-Process

LABORATORY

Communication

Same\Core
App Process
Shared memory + =

semaphores is the fastest
IPC method for two

processes running on
the same core

Latency (us)

shared memory

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 36

‘ Uég'é,’i‘.{éL \ Inter-Process

Communication

LABORATORY

App Process

1. Fixed-size control block

a.8.8
A |4 :
‘GV syscall registers
N 4 JUU

semaphores

r IR
shared memory ;a; {::}Slmulatlonnme

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 37

‘ ”Sg'é,’i‘.{éL \ Inter-Process

Communication

LABORATORY

App Process

1. Fixed-size control block

a.8.8
A |4 :
‘GV syscall registers
N 4 JUU

semaphores

r IR
shared memory ;a; (-:}smulauont.me

app stack app heap

Sim Controller Process

2. remap app memory to
directly read/write data buffers

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 38

‘ “ég'é,’i‘.{éL \ Inter-Process

N Communication
/g 1k write-+read 4k write-+read 16k write+read 64k write-+read
Tv/ 44.16
App Process £ 40 - 40 - 40 - 40 -
|_
= 20.44
5 20 1 20 151 20 @ 20 -
= 11.13 | 1142 11.5611.57
2 - 0 - 0 - 0 -
M
R 2 & R 2 S R 2 S R 2
Q (O’b C?’ \| (O’b c© N\ (0’5 c© N\ (0’5 c©
shared memory o < &° °° @\,Q“’ °° AN RPN

app stack app heap

Sim Controller Process

2. remap app memory to
directly read/write data buffers

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 39

‘ U.S.NAVAL \ 6. process control
ESEARC

Process Control

App Process

A |4 :
:g; syscall registers

semaphores

shared memory ia; simulation time

app stack app heap

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 40

‘ U.S.NAVAL \ 6. process control
ESEARC

Process Control

1. Write syscall registers

App Process 2. Signal controller semaphore

3. Wait on app semaphore

a.8.8
A |4 :
‘GV syscall registers
N 4 JUU

semaphores

r IR
shared memory ;a; (-:})smulauont.me

app stack app heap

Sim Controller Process

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 41

‘ U.S.NAVAL \ 6. process control
ESEARC

Process Control

1. Write syscall registers

App Process 2. Signal controller semaphore

3. Wait on app semaphore

a.8.8
A |4 :
‘GV syscall registers
N 4 JUU

semaphores

r IR
shared memory ;a; {:}Slmulatlontme

app stack app heap

. Read syscall registers
Sim Controller Process . Return if nonblocking else leave
app idle and return when ready
. Signal app semaphore
. Wait on controller semaphore

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 42

‘ U.S.NAVAL \ 6. process control
ESEARC

Process Control

| | Properties:
1. Write syscall registers

App Process 2. Signal controller semaphore « Controller worker thread
3. Wait on app semaphore and its app process run
synchronously

:g; @ syscall registers
Wy Ly ™Y J . Ensures nonconcurrent

semaphores access to app stack and
A\ @ |4 . . .
shared memory :a; (_i::}) simulation time heap memory

app stack app heap

. Read syscall registers
Sim Controller Process . Return if nonblocking else leave
app idle and return when ready
. Signal app semaphore
. Wait on controller semaphore

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 43

‘ U.S.NAVAL \
ESEARC

Process Control

7. CPU affinity

Use CPU pinning to pin each worker
App Process thread and all of its managed
processes to the same core

’c§: blocking nanosleep nonblocking nanosleep 1k write-+read
= 60 60 60 e
&
40.21
shared memory = 40 q322° 40 - 40
< . 23.65
4] - - . -
E 20 10.24 20 s 1219| 2V 11.13 10.82
O
5 0 - 0 -
as d & . . d & . .2
: X & X 320 ™ 2 32
Sim Controller Process s o 6@&";‘(@&"" o
Q‘ o é\o é\“ Q\(\X é\‘\

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 44

Outline

motivation
design
evaluation

Total Time (m)

‘ U.S.NAVAL \
ESEARC

LABORATORY

Faster and more scalable than the
uni-process, plugin architecture!

—
-)
\V)
|

A
-{'ptrace ’.—”
-
_ seccomp -
10! == uni-process
10° +
1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

U.S. Naval Research Laboratory

Evaluation: Large P2P Benchmarks

Uses significantly less memory than

the uni-process, plugin architecture!

mn -?
S 102 - -} ptrace ,“,V«

— : seccomp s

'qs)) 1 == uni-process e

- 101'5 -

=

< -

s o =

>< 1 1 1 1 1 1 1

g 1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

Co-opting Linux Processes for High-Performance Network Simulation | 46

‘ U.S.NAVAL \
ESEARC

LABORATORY

Evaluation: Large Tor Networks

Performance comparable to the

state of the art for large Tor networks

U.S. Naval Research Laboratory

32 1101

Q -

2 105

— 100 7 4¥ - = " H B
0% 95 phantom
o 90 ¥ shadow
'2 1 1 | | | |
% 5 10 15 20 25 30
e

Tor Network Model Scale (%)

Uses significantly less memory than

the uni-process, plugin architecture!

o 100 1= = = = - ol
5 08 -

K% 96 - phantom

S 94- -~ shadow

< 92-

02) 90 T J ! ' I I
5 5 10 15 20 25 30
K2 Tor Network Model Scale (%)

Co-opting Linux Processes for High-Performance Network Simulation | 47

U.S.NAVAL _ ' shadow on github
R SORATORY VI ETH R ELCEVENVS N ke I

shadow.github.io

Designed a new, hybrid network simulator/emulator o 2.3X faster than Shadow v1

* Cco-opts Linux processes into a discrete-event
network simulation that emulates kernel functionality

* enables large-scale, distributed system experiments

o 3.4X taster than NS-3
o 43X taster than gRalL [ToN’'19]

103 Hosts
103 - 975.3

. @ .
® 10
= 2
nd

1226

75.9
50.6

« Merged into the open-source Shadow project and
synonymous with Shadow v2

o Artifacts: https://netsim-atc2022.github.io

U.S. Naval Research Laboratory Co-opting Linux Processes for High-Performance Network Simulation | 48

Pk\aﬂ‘%\(f\ado\'“ 052 ga

https://netsim-atc2022.github.io/

