
Co-opting Linux Processes for High-
Performance Network Simulation

Rob Jansen, U.S. Naval Research Laboratory
Jim Newsome, Tor Project
Ryan Wails, Georgetown University & U.S. Naval Research Laboratory

Rob Jansen, Ph.D.
Computer Security Research Scientist
Center for High Assurance Computer Systems
U.S. Naval Research Laboratory

USENIX Annual Technical Conference
Carlsbad, CA, USA

July 11th, 2022

USENIX ATC’22 Best Paper Award!

Co-opting Linux Processes for High-Performance Network Simulation | 2U.S. Naval Research Laboratory

Main Takeaways

pha
ntomshad

ow ns-3 grai
l

100

101

R
un

ti
m

e
(s

)

0.8 0.7

2.5

12.3

101 Hosts

pha
ntomshad

ow ns-3 grai
l

101

102

2.7

5.8 7

100.3

102 Hosts

pha
ntomshad

ow ns-3 grai
l

102

103

22.6

50.6
75.9

975.3

103 Hosts

R
un

tim
e

(s
)

Designed a new, hybrid network simulator/emulator
• co-opts Linux processes into a discrete-event

network simulation that emulates kernel functionality
• enables large-scale, distributed system experiments

• Merged into the open-source Shadow project and
synonymous with Shadow v2

• Artifacts: https://netsim-atc2022.github.io

Read
the

paper!
shadow.github.io

• 2.3x faster than Shadow v1

• 3.4x faster than NS-3

• 43x faster than gRaIL [ToN’19]

https://netsim-atc2022.github.io/

Outline
motivation
design
evaluation

Co-opting Linux Processes for High-Performance Network Simulation | 4U.S. Naval Research Laboratory

Requirements for Large Distributed System Experimentation

• Important properties of test networks:
• Controllable: isolate important factors
• Replicable: identically replicate experiments

(determinism)

• Requirements for large distributed systems:
• Accurate: directly execute system software

(not an abstraction)
• Scalable: decouple from time, computational

constraints of host

Controllable

Accurate

Scalable Replicable

Our approach

U.S. Naval Research Laboratory

Problems with Traditional Approaches

• Simulation (e.g., ns-3)
• Not realistic: runs abstractions instead of real applications
• Hard to maintain and can lead to invalid results

• Emulation (e.g., mininet)
• Not controllable: results will not be identical
• Not scalable: CPU overload à time distortion

Co-opting Linux Processes for High-Performance Network Simulation | 5

Mininet > sudo mn

U.S. Naval Research Laboratory

Problems with Traditional Approaches

• Simulation (e.g., ns-3)
• Not realistic: runs abstractions instead of real applications
• Hard to maintain and can lead to invalid results

• Emulation (e.g., mininet)
• Not controllable: results will not be identical
• Not scalable: CPU overload à time distortion

20 40 60 80 100

Virtual Host Count

0

1

2

A
vg

.
P
ac

ke
ts

/s

£105

phantom
mininet

Co-opting Linux Processes for High-Performance Network Simulation | 6

Mininet > sudo mn

CPU overload
with >20 hosts

Forwarding capacity
limited: fewer packets than

expected are forwarded

Co-opting Linux Processes for High-Performance Network Simulation | 7U.S. Naval Research Laboratory

Hybrid Architectures and Challenges

• Hybrid architecture
• Network simulation, but directly execute application code
• Enjoys advantages of both simulation and emulation
• Best opportunity to scale to large-scale distributed systems

Architecture Example Tool Scalability Realism Control
Emulation Mininet
Simulation NS-3

Hybrid This work

Co-opting Linux Processes for High-Performance Network Simulation | 8U.S. Naval Research Laboratory

Limitations of Hybrid Architectures (1)

Executing application code via
plugin (link-map) namespaces

• appid = dlmopen(app.so)
• func = dlsym(appid, “main”)
• func()

NS-3-DCE, Shadow

Limitations
• Compatibility (must build PIC/PIE)
• Correctness (intercept libcalls only)
• Maintainability (custom ld, threading)

Co-opting Linux Processes for High-Performance Network Simulation | 9U.S. Naval Research Laboratory

Limitations of Hybrid Architectures (1)

Executing application code via
plugin (link-map) namespaces

• appid = dlmopen(app.so)
• func = dlsym(appid, “main”)
• func()

NS-3-DCE, Shadow

Limitations
• Compatibility (must build PIC/PIE)
• Correctness (intercept libcalls only)
• Maintainability (custom ld, threading)

Co-opting Linux Processes for High-Performance Network Simulation | 10U.S. Naval Research Laboratory

Limitations of Hybrid Architectures (2)

Executing code via Linux processes
• fork() + exec() à ptrace()

gRaIL [ToN’19]

Limitations: ptrace is slow!
• Process control: overhead quadratic

in total number of processes
• Syscall interception: 4 context

switches for every syscall
• Data transfer: extra syscall + mode

change for every word of memory
pha

ntomshad
ow ns-3 grai

l

100

101

R
un

ti
m

e
(s

)

0.8 0.7

2.5

12.3

101 Hosts

pha
ntomshad

ow ns-3 grai
l

101

102

2.7

5.8 7

100.3

102 Hosts

pha
ntomshad

ow ns-3 grai
l

102

103

22.6

50.6
75.9

975.3

103 Hosts

R
un

tim
e

(s
)

gRaIL (on ns-3)

is 13x slower
than ns-3 alone

Co-opting Linux Processes for High-Performance Network Simulation | 11U.S. Naval Research Laboratory

Our Research Challenge

Can we design a tool with the
performance benefits of a uni-process

plugin-based architecture
AND

the improved modularity and isolation
of a mutli-process architecture?

Co-opting Linux Processes for High-Performance Network Simulation | 12U.S. Naval Research Laboratory

Our Research Challenge

Outline
motivation
design
evaluation

Co-opting Linux Processes for High-Performance Network Simulation | 14U.S. Naval Research Laboratory

Design Overview

• Discrete-event packet-level
network simulator

• Directly executes apps as
standard Linux processes

• Intercepts all system calls made
by apps and emulates them

• Simulates system call behavior and
networking
• File descriptors (files, sockets, pipes)
• Event notification (poll, epoll, select)
• Networking (buffers, protocols, ifaces)
• DNS and routing (latency, bandwidth)

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Co-opting Linux Processes for High-Performance Network Simulation | 15U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

Goal: efficiently parallelize simulation workload

Physical
processors

Co-opting Linux Processes for High-Performance Network Simulation | 16U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

Goal: efficiently parallelize simulation workload

Physical
processors

Virtual hosts
and processes

Co-opting Linux Processes for High-Performance Network Simulation | 17U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

Goal: efficiently parallelize simulation workload

How many
worker threads
should we run?

Physical
processors

Virtual hosts
and processes

Co-opting Linux Processes for High-Performance Network Simulation | 18U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

Goal: efficiently parallelize simulation workload

How many
worker threads
should we run?

thr
ea

d/
ho

st

thr
ea

d/
LP

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(s

)

33.1
40.5

seccomp

thr
ea

d/
ho

st

thr
ea

d/
LP

53.1
54.9

uni-proc

thr
ea

d/
ho

st

thr
ea

d/
LP

0

1

2

M
ax

R
A
M

U
se

d
(G

iB
)

1.5

1.1

seccomp

thr
ea

d/
ho

st

thr
ea

d/
LP

2.25

1.6

uni-proc

thr
ea

d/
ho

st

thr
ea

d/
LP

0
2
4
6
8

10

C
P
U

M
ig

ra
ti
on

s
(£

10
3
)

9.31

3.24

seccomp

thr
ea

d/
ho

st

thr
ea

d/
LP

5.61

0.06

uni-proc

Co-opting Linux Processes for High-Performance Network Simulation | 19U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

Goal: efficiently parallelize simulation workload

Physical
processors

Virtual hosts
and processes

One thread
per host!

Co-opting Linux Processes for High-Performance Network Simulation | 20U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

LPLPLPLP

Goal: efficiently parallelize simulation workload

Physical
processors

Logical processors
(avoid CPU

oversubscription)

Virtual hosts
and processes

One thread
per host

Co-opting Linux Processes for High-Performance Network Simulation | 21U.S. Naval Research Laboratory

Parallel Worker Threads

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

CPU CPU CPU CPU

LPLPLPLP

Goal: efficiently parallelize simulation workload

Physical
processors

Logical processors
(avoid CPU

oversubscription)

Virtual hosts
and processes

One thread
per host

Thread scheduling:
• Work stealing

• Each LP starts a thread
1. Runs all assigned events in

current round (1 ms)
2. Set thread to waiting
3. Starts next waiting thread (if any)

• When all threads waiting
− Advance round clock
− Repeat

Co-opting Linux Processes for High-Performance Network Simulation | 22U.S. Naval Research Laboratory

Direct Execution

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API

Linux Kernel, Devices, Network

Sim Controller Process

App Process

Co-opting Linux Processes for High-Performance Network Simulation | 23U.S. Naval Research Laboratory

Direct Execution

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API

Sim Controller Process

1. LD_PRELOAD=shim.so
2. IPC=“ipc.shm”
3. vfork() + execvpe()

Injected shim.so library

Linux Kernel, Devices, Network

App Process

Co-opting Linux Processes for High-Performance Network Simulation | 24U.S. Naval Research Laboratory

Direct Execution

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API

Sim Controller ProcessInjected shim.so library

Attach to
“ipc.shm”
for IPC

IPC

Linux Kernel, Devices, Network

App Process

Co-opting Linux Processes for High-Performance Network Simulation | 25U.S. Naval Research Laboratory

Direct Execution

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API

Sim Controller ProcessInjected shim.so library

App is running and can
communicate with controller

IPC

Linux Kernel, Devices, Network

Co-opting Linux Processes for High-Performance Network Simulation | 26U.S. Naval Research Laboratory

Syscall Interposition

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc) … Library N

Linked libraries

Controller
Libraries

Linked libraries

Lib 0
Controller

Code

Linux Kernel, Devices, Network

Co-opting Linux Processes for High-Performance Network Simulation | 27U.S. Naval Research Laboratory

Syscall Interposition

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc) … Library N

Controller
Libraries

Lib 0
Controller

Code

Linux Kernel, Devices, Network

1. Intercept libcalls
(LD_PRELOAD)

Co-opting Linux Processes for High-Performance Network Simulation | 28U.S. Naval Research Laboratory

Syscall Interposition

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc) … Library N

Controller
Libraries

Lib 0
Controller

Code

Linux Kernel, Devices, Network2. Intercept syscalls
(seccomp)

1. Intercept libcalls
(LD_PRELOAD)

Co-opting Linux Processes for High-Performance Network Simulation | 29U.S. Naval Research Laboratory

Syscall Interposition

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc) … Library N

Controller
Libraries

Lib 0
Controller

Code

Linux Kernel, Devices,
Network

1. Intercept libcalls
(LD_PRELOAD)

2. Intercept syscalls
(seccomp)

Co-opting Linux Processes for High-Performance Network Simulation | 30U.S. Naval Research Laboratory

Syscall Interposition

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc) … Library N

Controller
Libraries

Lib 0
Controller

Code

Linux Kernel, Devices,
Network

1. Intercept libcalls
(LD_PRELOAD)

2. Intercept syscalls
(seccomp)

on
ly

ptr
ac

e

pre
loa

d+
ptr

ac
e

on
ly

sec
co

mp

pre
loa

d+
sec

co
mp

un
i-p

roc
ess

0

10

20

B
en

ch
m

ar
k

T
im

e
(µ

s)

16 16.0715.34
13.37

9.51

blocking nanosleep

on
ly

ptr
ac

e

pre
loa

d+
ptr

ac
e

on
ly

sec
co

mp

pre
loa

d+
sec

co
mp

un
i-p

roc
ess

0

10

20

9.41 9.8 9.64

6.8

0

nonblocking nanosleep

on
ly

ptr
ac

e

pre
loa

d+
ptr

ac
e

on
ly

sec
co

mp

pre
loa

d+
sec

co
mp

un
i-p

roc
ess

0

10

20
15.6416.0315.26

11.13

7.78

1k write+read

Co-opting Linux Processes for High-Performance Network Simulation | 31U.S. Naval Research Laboratory

Syscall Emulation

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc)Lib 0

Linux Kernel, Devices,
Network

… Library N
Controller
Libraries

Controller
CodeIPC

• File descriptors (files, sockets, pipes)
• Event notification (poll, epoll, select)
• Networking (buffers, protocols, ifaces)
• DNS and routing (latency, bandwidth)

Co-opting Linux Processes for High-Performance Network Simulation | 32U.S. Naval Research Laboratory

Syscall Emulation

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc)Lib 0

Linux Kernel, Devices,
Network

… Library N
Controller
Libraries

Controller
CodeIPC

Emulate in Shim
- faster
- for hotpath syscalls (time)

• File descriptors (files, sockets, pipes)
• Event notification (poll, epoll, select)
• Networking (buffers, protocols, ifaces)
• DNS and routing (latency, bandwidth)

Co-opting Linux Processes for High-Performance Network Simulation | 33U.S. Naval Research Laboratory

Syscall Emulation

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Linux Kernel Syscall API
Injected shim.so library

Application
Code

Library 1
(e.g. libc)Lib 0

Linux Kernel, Devices,
Network

Emulate in Shim
- faster
- for hotpath syscalls (time)

… Library N
Controller
Libraries

Controller
Code

Emulate in Controller
- slower (IPC overhead)
- IPC: syscall args/data

IPC

• File descriptors (files, sockets, pipes)
• Event notification (poll, epoll, select)
• Networking (buffers, protocols, ifaces)
• DNS and routing (latency, bandwidth)

Co-opting Linux Processes for High-Performance Network Simulation | 34U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

IPC

Co-opting Linux Processes for High-Performance Network Simulation | 35U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

Co-opting Linux Processes for High-Performance Network Simulation | 36U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

Atom
ic

Fla
g

Mess
ag

e Que
ue

Se
map

ho
re

Unix
Dom

ain
So

ck
et

0.0

2.5

5.0

L
at

en
cy

(µ
s)

4.4
5.1

4.1

6.3

Same Core

Atom
ic

Fla
g

Mess
ag

e Que
ue

Se
map

ho
re

Unix
Dom

ain
So

ck
et

0

20

1.4

14.1 15.4

32.7

Cross Core

Atom
ic

Fla
g

Mess
ag

e Que
ue

Se
map

ho
re

Unix
Dom

ain
So

ck
et

0

20

40

1.5

21.4

28.7

35

Cross Node

Shared memory +
semaphores is the fastest
IPC method for two
processes running on
the same core

Co-opting Linux Processes for High-Performance Network Simulation | 37U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

1. Fixed-size control block

semaphores

syscall registers

simulation time

Co-opting Linux Processes for High-Performance Network Simulation | 38U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

1. Fixed-size control block

semaphores

syscall registers

simulation time

app stack app heap

2. remap app memory to
directly read/write data buffers

Co-opting Linux Processes for High-Performance Network Simulation | 39U.S. Naval Research Laboratory

Inter-Process
Communication

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

1. Fixed-size control block

semaphores

syscall registers

simulation time

2. remap app memory to
directly read/write data buffers

pro
c vm

pro
c mmap

un
i-p

roc
ess

0

20

40

B
en

ch
m

ar
k

T
im

e
(µ

s)

13.68
11.13

7.78

1k write+read

pro
c vm

pro
c mmap

un
i-p

roc
ess

0

20

40

15.1
11.42

8.77

4k write+read

pro
c vm

pro
c mmap

un
i-p

roc
ess

0

20

40

20.44

11.5611.57

16k write+read

pro
c vm

pro
c mmap

un
i-p

roc
ess

0

20

40
44.16

22.66
25.28

64k write+read

app stack app heap

Co-opting Linux Processes for High-Performance Network Simulation | 40U.S. Naval Research Laboratory

Process Control

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory
semaphores

syscall registers

simulation time

app stack app heap

Co-opting Linux Processes for High-Performance Network Simulation | 41U.S. Naval Research Laboratory

Process Control

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory
semaphores

syscall registers

simulation time

1. Write syscall registers
2. Signal controller semaphore
3. Wait on app semaphore

app stack app heap

Co-opting Linux Processes for High-Performance Network Simulation | 42U.S. Naval Research Laboratory

Process Control

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory
semaphores

syscall registers

simulation time

1. Write syscall registers
2. Signal controller semaphore
3. Wait on app semaphore

3. Read syscall registers
4. Return if nonblocking else leave

app idle and return when ready
5. Signal app semaphore
6. Wait on controller semaphore

app stack app heap

Co-opting Linux Processes for High-Performance Network Simulation | 43U.S. Naval Research Laboratory

Process Control

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory
semaphores

syscall registers

simulation time

Properties:
• Controller worker thread

and its app process run
synchronously

• Ensures nonconcurrent
access to app stack and
heap memory

1. Write syscall registers
2. Signal controller semaphore
3. Wait on app semaphore

3. Read syscall registers
4. Return if nonblocking else leave

app idle and return when ready
5. Signal app semaphore
6. Wait on controller semaphore

app stack app heap

Co-opting Linux Processes for High-Performance Network Simulation | 44U.S. Naval Research Laboratory

Process Control

1. parallel workers
2. direct execution
3. syscall interposition
4. syscall emulation

5. IPC
6. process control
7. CPU affinity

Sim Controller Process

Injected shim.so library

App Process

shared memory

sta
nd

ard

pin
+sta

nd
ard

rea
ltim

e

pin
+rea

ltim
e

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(µ

s)

37.55

13.37

33.16

10.24

blocking nanosleep

sta
nd

ard

pin
+sta

nd
ard

rea
ltim

e

pin
+rea

ltim
e

0

20

40

60

18.45

6.8

23.65

12.19

nonblocking nanosleep

sta
nd

ard

pin
+sta

nd
ard

rea
ltim

e

pin
+rea

ltim
e

0

20

40

60
50.26

11.13

40.21

10.82

1k write+read

Use CPU pinning to pin each worker
thread and all of its managed
processes to the same core

Outline
motivation
design
evaluation

Co-opting Linux Processes for High-Performance Network Simulation | 46U.S. Naval Research Laboratory

Evaluation: Large P2P Benchmarks

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

100

101

102

T
ot

al
T

im
e

(m
)

ptrace
seccomp
uni-process

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

101

102

M
ax

R
A
M

U
se

d
(G

iB
)

ptrace
seccomp
uni-process

Faster and more scalable than the
uni-process, plugin architecture!

Uses significantly less memory than
the uni-process, plugin architecture!

Co-opting Linux Processes for High-Performance Network Simulation | 47U.S. Naval Research Laboratory

Evaluation: Large Tor Networks

Performance comparable to the
state of the art for large Tor networks

Uses significantly less memory than
the uni-process, plugin architecture!

Co-opting Linux Processes for High-Performance Network Simulation | 48U.S. Naval Research Laboratory

Main Takeaways

pha
ntomshad

ow ns-3 grai
l

100

101

R
un

ti
m

e
(s

)

0.8 0.7

2.5

12.3

101 Hosts

pha
ntomshad

ow ns-3 grai
l

101

102

2.7

5.8 7

100.3

102 Hosts

pha
ntomshad

ow ns-3 grai
l

102

103

22.6

50.6
75.9

975.3

103 Hosts

R
un

tim
e

(s
)

Designed a new, hybrid network simulator/emulator
• co-opts Linux processes into a discrete-event

network simulation that emulates kernel functionality
• enables large-scale, distributed system experiments

• Merged into the open-source Shadow project and
synonymous with Shadow v2

• Artifacts: https://netsim-atc2022.github.io

Read
the

paper!
shadow.github.io

• 2.3x faster than Shadow v1

• 3.4x faster than NS-3

• 43x faster than gRaIL [ToN’19]

https://netsim-atc2022.github.io/

