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Benefits	of	serverless

FunctionTenant

Serverless provider

Function:	Standalone,	small	application	dedicated	to	specific	tasks

Function
Deploy

• Minimal	configuration
• No	efforts	on	server	management	
• Low	cost
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Serverless ecosystem	

Source:	https://venturebeat.com/2017/10/22/the-big-opportunities-in-serverless-computing/
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Lots	of	questions	about	serverless

• Are	applications	resistant	to	DDos attacks		
in	serverless?	

• Are	functions	secure	in	serverless?	

• Can	serverless providers	deliver	
guaranteed	performance?

…

We	need	better	methodology	and	more	systematic	
measurement	to	answer	these	questions	
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Contributions
• In-depth	study	of	resource	management	and	performance	
isolation	in

• Identify	opportunities	to	improve	serverless platforms	
o AWS:	Bad	performance	 isolation,	 function	consistency	issue,	…
o Azure:	Unpredictable	performance,	 tenant	isolation	issues,	…
o Google:	Resource	accounting	bug,	…

• Open-source	measurement	tool
(https://github.com/liangw89/faas_measure)

Azure Functions Google Cloud FunctionsAWS Lambda
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Overview
• Background

• Methodology

• Highlighted	results
o Serverless architectures	
o Resource	scheduling
o Performance	isolation
o Bugs
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How	serverless works

Serverless provider

Function
User Request

VM

Function
ContainerResponse

A function runs	in	a	container	(function	instance) launched	by	the	
providerwith	limited	CPU/memory/execution	time

Launch
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How	serverless works

Serverless provider

Function
User

Function
Container

The	function	instance	will	be	frozen	after	returning	from	invocation

Pause
New	requests:	 Reactivated

Tenants	don’t	need	to	pay	
while	instances	are	paused
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How	serverless works

Serverless provider

Function

User
Concurrent	requests

VM

Responses

Providers	manage	backend	infrastructures	and	resource	for	tenants

Scale	up
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Methodology

Azure Functions

Google Cloud Functions

AWS Lambda

Measurement	function
• Collect	information	via	procfs/cmd/env
• Execute	performance	tests

Setting	variables:
• Function	memory
• Function	 language
• Request	frequency
• Concurrent	request

Invoke	measurement	functions	many	times	(50K+)	under	various	settings	
from	vantage	points	in	the	same	cloud	region	

Time:
July–Dec	2017,	May	2018
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Tool	1: Map	requests	to	instances

Inst1
Request	1

Instance	identification:	
Write	a	unique	 file	on	/tmp à persistent	during	 instance	lifetime	

Result	+	“inst1.txt”
(new	inst!)

inst1.txt

Inst2

inst2.txt
Request	2

Result	+	“inst1.txt”	
(inst1	ran	again!)

Request	3

Result	+	“inst2.txt”
(new	inst!)

Which	instance	handled	the	request?	
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Tool	2:	Map	instances	to	VMs

Requests

VM	identification:
• AWS:	An	entry	in	the	/proc/self/cgroup
• Azure:	The	WEBSITE_INSTANCE_ID environment	variable
• Google:	Unknown

Results	
+	Inst ID
+	VM	ID

VM1
VM	ID	=	abc

VM	ID	=	abc

VM	ID	=	xyz

Verified	via	I/O-based	and	Flush-Reload	coresidency tests	

Are	instances	on	the	same	VM?
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Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs
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Do	multiple	tenants’	instances	run	on	the	same	VM?

AWS:		No	à VM	only	hosts	functions	 from	single	tenant

AWS

VM1 VM2
Tenant	A	
func1

Tenant	A	
func2

Tenant	B	
func3

Azure

VM1

Tenant	A	

func1 func2

Tenant	B	

Azure:	
• 2017:	Yes	à VM	hosts	 functions	from	multiple	tenants
• 2018:	No.	But	other	platforms	still	do	this:	Spotinst,	stdlib,	webtask.io

Google:	Unknown

Cross-tenant	VM	sharing	make	applications	
vulnerable	to	side-channel	attacks
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Do	VMs	have	the	same	configurations?
Methodology:	Examine	procfs and	env variables	of	the	host	VMs	of	50	K	function	 instances

AWS:	5	CPU	configurations	(1	or	2	vCPUs,	4	CPU	models)
Azure:	9	configurations	(	1	or	2	or	4	vCPUs,	4	CPU	models)
Google:	4	configurations	(4	CPU	models)

2	x	2.9	
GHz		
59%

2	x	2.8	
GHz		
38%

2	x	2.4	
GHz		
3%

2	x	2.3	
GHz	
0.09%

1	x	2.4	
GHz
0.01%

AWS

79
47%

85
45%

63
4%

45
4%

Google
model	
version

1 vCPU
54%2	vCPU

25%

4	vCPU
21%

Azure

Different	types	of	VMs	could	result	in	
different	instance	performance		
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Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs
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Can	the	platforms	effectively	handle	concurrent	requests?

Azure/Google:	Don’t	deliver	promised	scalability		

Methodology:	 send	N	concurrent	 requests		and	examine	the	number	of	instances	
running	 concurrently	

N #	Requests

#	
In
st
an
ce
	

AWS:	N

Google:	N	/	2

Azure:	10
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How	long	does	it	take	to	launch	an	instance?
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AWS: 160 ms

Google:		 500	ms (2017)	
à 2000	ms (2018)

Azure:	 3600	ms (2017)	
à 300	ms (2018)

Coldstart might	affect	tail	latencies

Median	coldstart latency	per	hour	over	
7	days	(2017)
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Median	coldstart latency	of	1000	instances
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Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs
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What	can	affect	performance?
• CPU	share:	fraction	of	1000-ms	time	period	for	which	the	instance	can	use	CPU

• IO	throughput:	Write	512	KB	of	data	to	the	local	disk	1,000	times	(via	dd or	scripts)

• Network	throughput:	Use	iperf3	to	run	the	throughput	test	for	10	seconds

AWS Azure Google

Coresidency Yes Yes Unknown
VM configuration No Yes No

Factors	affecting	performance:
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How	instances	are	placed	on	VMs
AWS:	Bin-packing;	use	at	most	3328 MB	VM	memory

Azure:	Random

Google:	Unknown

AWS	Lambda	VM	
memory	utilization:	
85-100%

AWS:	Easy	for	instances	from	the	same	tenant	to	be	coresident

25	*	128	MB	insts:	1	VM
50	*	128	MB	insts:	2	VMs
…
200	*	128	MB	insts:	8	VMs
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No.	of	instances

AWS:	No.	of	VMs	being	used	 for	a	given	
number	of	instances	(128	MB)
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(Estimated	based	on	the	median	performance	across	coresident instances,	over	50	rounds)	

CPU IO Network

AWS

1	instance 20	instances

CPU IO Netowrk

Azure

1	instance 6	instances

same

4x	-
19x	-

3x	-
5x	- 6x	-

Coresident instances	contend	for	VM	resources

Resources	are	allocated	per	VM
More	co-residency	decreases	resources	per	function
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(Estimated	based	on	the	median	performance	across	coresident instances,	over	50	rounds)	
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AWS/Google:	CPU	share	is	proportional	to	memory	

AWS Google

More	memory	-->	More	CPU	-->	Better	performance
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AWS:		Functions	of	128	MB	memory	can	use	CPU	for	80	ms in	1000	ms
Functions	 of	1.5	GB	memory	can	use	CPU	for	900	ms in	1000	ms
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VM configuration No Yes No
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What	can	affect	performance?
• CPU	share:	fraction	of	1000-ms	time	period	for	which	the	instance	can	use	CPU

• IO	throughput:	Write	512	KB	of	data	to	the	local	disk	1,000	times	(via	dd or	scripts)

• Network	throughput:	Use	iperf3	to	run	the	throughput	test	for	10	seconds

Factors	affecting	performance:
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Azure:	VM	configurations	affect	performance	
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Azure:

Same	function	+	fewer	resources		
=	longer	running	time		=	more	money	

4-vCPU	VMs	get	1.5x IO	throughput,	 	
2x network	throughput,	
and	more	CPU	than	other	types	of	VMs	

CPU	share
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Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs
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Can	AWS	propagate	function	updates	correctly?

50	concurrent	requests

Instance	set	A

Memory
IAM	roles	
Environment	variable	
Function	 code

Update
1	of:

50	concurrent	requests

1

2

3

Did	any	instances	in	set	B	run	func instead	of	func’?	

func

func func’

func’

Instance	set	B

Methodology:
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AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function
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AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)
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AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)

• Case	2:		Requests	handled	by	the	instances	for	outdated	functions	(3.7%)
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AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)

• Case	2:		Requests	handled	by	the	instances	for	outdated	functions	(3.7%)

Inconsistent	responses	to	users
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Google:	Stealthy	background	process
Processes	can	run	after	function	 invocation	concluded

exports.handler =	function handler(req, res)	{
//	run	asynchronous task	here.

line	A:	 user_task();
//	send	back	results.

line	B: res.status(http_code).send(user_data);	
}

Nodejs will	execute	line	B	
without	waiting	for	
user_task returns

• Processes	can	stay	alive	for	to	21	hours
• No	billing	à Use	extra	resources	for	free!

Method:
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Google:	Stealthy	background	process
Processes	can	run	after	function	 invocation	concluded

exports.handler =	function handler(req, res)	{
//	run	asynchronous task	here.

line	A:	 user_task();
//	send	back	results.

line	B: res.status(http_code).send(user_data);	
}

Nodejs will	execute	line	B	
without	waiting	for	
user_task returns

Method:

Google	should	monitor	the	resource	usage	of	the	entire	
function	instance	rather	than	the	Nodejs processes	
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Summary
• In-depth	measurement	study	that	discover	various	issues	
in	three	serverless computing	platforms
o Unpredictable	performance	
o Bad	performance	isolation
o Consistency	issues

• Performance	baselines	and	design	considerations	for	
future	design	of	serverless platforms

• Responsible	disclosure


