
Peeking	Behind	the	Curtains	
of	Serverless Platforms

Liang	Wang1 ,	Mengyuan Li2,	Yinqian Zhang2 ,	
Thomas	Ristenpart3,	Michael	Swift1

1	UW-Madison, 2 The	Ohio	State	University,	3 Cornell	Tech

Providers	do	more,	tenant	do	less	

…

Physical	Machine

VM

…

Server Scaling Uptime

APP

Serverless
(FaaS)

Non-controllable Controllable

Physical	Machine

VM

PaaS

…

Server Scaling Uptime

APP

Physical	Machine

APP

VM

IaaS

…

Server Scaling Uptime

APP

3

Benefits	of	serverless

FunctionTenant

Serverless provider

Function:	Standalone,	small	application	dedicated	to	specific	tasks

Function
Deploy

• Minimal	configuration
• No	efforts	on	server	management	
• Low	cost

4

Serverless ecosystem	

Source:	https://venturebeat.com/2017/10/22/the-big-opportunities-in-serverless-computing/

5

Lots	of	questions	about	serverless

• Are	applications	resistant	to	DDos attacks		
in	serverless?	

• Are	functions	secure	in	serverless?	

• Can	serverless providers	deliver	
guaranteed	performance?

…

We	need	better	methodology	and	more	systematic	
measurement	to	answer	these	questions	

6

Contributions
• In-depth	study	of	resource	management	and	performance	
isolation	in

• Identify	opportunities	to	improve	serverless platforms	
o AWS:	Bad	performance	 isolation,	 function	consistency	issue,	…
o Azure:	Unpredictable	performance,	 tenant	isolation	issues,	…
o Google:	Resource	accounting	bug,	…

• Open-source	measurement	tool
(https://github.com/liangw89/faas_measure)

Azure Functions Google Cloud FunctionsAWS Lambda

7

Overview
• Background

• Methodology

• Highlighted	results
o Serverless architectures	
o Resource	scheduling
o Performance	isolation
o Bugs

8

How	serverless works

Serverless provider

Function
User Request

VM

Function
ContainerResponse

A function runs	in	a	container	(function	instance) launched	by	the	
providerwith	limited	CPU/memory/execution	time

Launch

VM

9

How	serverless works

Serverless provider

Function
User

Function
Container

The	function	instance	will	be	frozen	after	returning	from	invocation

Pause
New	requests:	 Reactivated

Tenants	don’t	need	to	pay	
while	instances	are	paused

VM

10

How	serverless works

Serverless provider

Function

User
Concurrent	requests

VM

Responses

Providers	manage	backend	infrastructures	and	resource	for	tenants

Scale	up

11

Methodology

Azure Functions

Google Cloud Functions

AWS Lambda

Measurement	function
• Collect	information	via	procfs/cmd/env
• Execute	performance	tests

Setting	variables:
• Function	memory
• Function	 language
• Request	frequency
• Concurrent	request

Invoke	measurement	functions	many	times	(50K+)	under	various	settings	
from	vantage	points	in	the	same	cloud	region	

Time:
July–Dec	2017,	May	2018

12

Tool	1: Map	requests	to	instances

Inst1
Request	1

Instance	identification:	
Write	a	unique	 file	on	/tmp à persistent	during	 instance	lifetime	

Result	+	“inst1.txt”
(new	inst!)

inst1.txt

Inst2

inst2.txt
Request	2

Result	+	“inst1.txt”	
(inst1	ran	again!)

Request	3

Result	+	“inst2.txt”
(new	inst!)

Which	instance	handled	the	request?	

VM2

13

Tool	2:	Map	instances	to	VMs

Requests

VM	identification:
• AWS:	An	entry	in	the	/proc/self/cgroup
• Azure:	The	WEBSITE_INSTANCE_ID environment	variable
• Google:	Unknown

Results	
+	Inst ID
+	VM	ID

VM1
VM	ID	=	abc

VM	ID	=	abc

VM	ID	=	xyz

Verified	via	I/O-based	and	Flush-Reload	coresidency tests	

Are	instances	on	the	same	VM?

14

Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs

15

Do	multiple	tenants’	instances	run	on	the	same	VM?

AWS:		No	à VM	only	hosts	functions	 from	single	tenant

AWS

VM1 VM2
Tenant	A	
func1

Tenant	A	
func2

Tenant	B	
func3

Azure

VM1

Tenant	A	

func1 func2

Tenant	B	

Azure:	
• 2017:	Yes	à VM	hosts	 functions	from	multiple	tenants
• 2018:	No.	But	other	platforms	still	do	this:	Spotinst,	stdlib,	webtask.io

Google:	Unknown

Cross-tenant	VM	sharing	make	applications	
vulnerable	to	side-channel	attacks

16

Do	VMs	have	the	same	configurations?
Methodology:	Examine	procfs and	env variables	of	the	host	VMs	of	50	K	function	 instances

AWS:	5	CPU	configurations	(1	or	2	vCPUs,	4	CPU	models)
Azure:	9	configurations	(1	or	2	or	4	vCPUs,	4	CPU	models)
Google:	4	configurations	(4	CPU	models)

2	x	2.9	
GHz		
59%

2	x	2.8	
GHz		
38%

2	x	2.4	
GHz		
3%

2	x	2.3	
GHz	
0.09%

1	x	2.4	
GHz
0.01%

AWS

79
47%

85
45%

63
4%

45
4%

Google
model	
version

1 vCPU
54%2	vCPU

25%

4	vCPU
21%

Azure

Different	types	of	VMs	could	result	in	
different	instance	performance		

17

Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs

18

Can	the	platforms	effectively	handle	concurrent	requests?

Azure/Google:	Don’t	deliver	promised	scalability		

Methodology:	 send	N	concurrent	 requests		and	examine	the	number	of	instances	
running	 concurrently	

N #	Requests

#	
In
st
an
ce
	

AWS:	N

Google:	N	/	2

Azure:	10

19

How	long	does	it	take	to	launch	an	instance?

 0

 50

 100

 150

 200

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168

AWS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168

b

Google

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Mon Tue Wed Thu Fri Sat Sun

Azure

AWS: 160 ms

Google:		 500	ms (2017)	
à 2000	ms (2018)

Azure:	 3600	ms (2017)	
à 300	ms (2018)

Coldstart might	affect	tail	latencies

Median	coldstart latency	per	hour	over	
7	days	(2017)

m
s

m
s

m
s

Median	coldstart latency	of	1000	instances

20

Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs

21

What	can	affect	performance?
• CPU	share:	fraction	of	1000-ms	time	period	for	which	the	instance	can	use	CPU

• IO	throughput:	Write	512	KB	of	data	to	the	local	disk	1,000	times	(via	dd or	scripts)

• Network	throughput:	Use	iperf3	to	run	the	throughput	test	for	10	seconds

AWS Azure Google

Coresidency Yes Yes Unknown
VM configuration No Yes No

Factors	affecting	performance:

22

How	instances	are	placed	on	VMs
AWS:	Bin-packing;	use	at	most	3328 MB	VM	memory

Azure:	Random

Google:	Unknown

AWS	Lambda	VM	
memory	utilization:	
85-100%

AWS:	Easy	for	instances	from	the	same	tenant	to	be	coresident

25	*	128	MB	insts:	1	VM
50	*	128	MB	insts:	2	VMs
…
200	*	128	MB	insts:	8	VMs

0

2

4

6

8

10

0 50 100 150 200

No
.	o

f	V
M
s

No.	of	instances

AWS:	No.	of	VMs	being	used	 for	a	given	
number	of	instances	(128	MB)

23

(Estimated	based	on	the	median	performance	across	coresident instances,	over	50	rounds)	

CPU IO Network

AWS

1	instance 20	instances

CPU IO Netowrk

Azure

1	instance 6	instances

same

4x	-
19x	-

3x	-
5x	- 6x	-

Coresident instances	contend	for	VM	resources

Resources	are	allocated	per	VM
More	co-residency	decreases	resources	per	function

24

(Estimated	based	on	the	median	performance	across	coresident instances,	over	50	rounds)	

CPU IO Network

AWS

1	instance 20	instances

CPU IO Netowrk

Azure

1	instance 6	instances

same

4x	-
19x	-

3x	-
5x	- 6x	-

Coresident instances	contend	for	VM	resources

Resources	are	allocated	per	VM
More	co-residency	decreases	resources	per	function

25

AWS/Google:	CPU	share	is	proportional	to	memory	

AWS Google

More	memory	-->	More	CPU	-->	Better	performance

0 500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Function memory (MB)

F
ra

ct
io
n

CPU share Mem*2/3328

0 1,000 2,000

0.5

1

Function memory (MB)

F
ra

ct
io
n

CPU share

AWS:		Functions	of	128	MB	memory	can	use	CPU	for	80	ms in	1000	ms
Functions	 of	1.5	GB	memory	can	use	CPU	for	900	ms in	1000	ms

AWS Azure Google

Coresidency Yes Yes Unknown
VM configuration No Yes No

26

What	can	affect	performance?
• CPU	share:	fraction	of	1000-ms	time	period	for	which	the	instance	can	use	CPU

• IO	throughput:	Write	512	KB	of	data	to	the	local	disk	1,000	times	(via	dd or	scripts)

• Network	throughput:	Use	iperf3	to	run	the	throughput	test	for	10	seconds

Factors	affecting	performance:

27

Azure:	VM	configurations	affect	performance	

32.2% 0.5%

67.8%

99.5%

0%

20%

40%

60%

80%

100%

1	or	2	vCPUs 4	vCPUs

%
	o
f	i
ns
ta
nc
es

0-60% 60%-80%

Azure:

Same	function	+	fewer	resources		
=	longer	running	time		=	more	money	

4-vCPU	VMs	get	1.5x IO	throughput,	 	
2x network	throughput,	
and	more	CPU	than	other	types	of	VMs	

CPU	share

28

Highlighted	results

• Serverless architectures

• Resource	scheduling

• Performance	isolation

• Bugs

29

Can	AWS	propagate	function	updates	correctly?

50	concurrent	requests

Instance	set	A

Memory
IAM	roles	
Environment	variable	
Function	 code

Update
1	of:

50	concurrent	requests

1

2

3

Did	any	instances	in	set	B	run	func instead	of	func’?	

func

func func’

func’

Instance	set	B

Methodology:

30

AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

31

AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)

32

AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)

• Case	2:		Requests	handled	by	the	instances	for	outdated	functions	(3.7%)

33

AWS:	Inconsistent	function	usage

3.8%	(out	of	20K)	ran	an	inconsistent	or	outdated	function

• Case	1:		New	instances	ran	outdated	functions	(0.1%)

• Case	2:		Requests	handled	by	the	instances	for	outdated	functions	(3.7%)

Inconsistent	responses	to	users

34

Google:	Stealthy	background	process
Processes	can	run	after	function	 invocation	concluded

exports.handler =	function handler(req, res)	{
//	run	asynchronous task	here.

line	A:	 user_task();
//	send	back	results.

line	B: res.status(http_code).send(user_data);	
}

Nodejs will	execute	line	B	
without	waiting	for	
user_task returns

• Processes	can	stay	alive	for	to	21	hours
• No	billing	à Use	extra	resources	for	free!

Method:

35

Google:	Stealthy	background	process
Processes	can	run	after	function	 invocation	concluded

exports.handler =	function handler(req, res)	{
//	run	asynchronous task	here.

line	A:	 user_task();
//	send	back	results.

line	B: res.status(http_code).send(user_data);	
}

Nodejs will	execute	line	B	
without	waiting	for	
user_task returns

Method:

Google	should	monitor	the	resource	usage	of	the	entire	
function	instance	rather	than	the	Nodejs processes	

36

Summary
• In-depth	measurement	study	that	discover	various	issues	
in	three	serverless computing	platforms
o Unpredictable	performance	
o Bad	performance	isolation
o Consistency	issues

• Performance	baselines	and	design	considerations	for	
future	design	of	serverless platforms

• Responsible	disclosure

