Peeking Behind the Curtains
of Serverless Platforms

Liang Wang', Mengyuan Li?, Yingian Zhang?,
Thomas Ristenpart3, Michael Swift!
L UW-Madison, 2 The Ohio State University, 3 Cornell Tech

@ Department of = CORNELL
CompULETTENE o Y TECH THE OHIO STATE
UNIVERSITY

Providers do more, tenant do less

Serverless
(Faa$)
APP

laaS PaaS

APP

APP

VM
Physical Machine Physical Machine Physical Machine

- Non-controllable - Controllable

o

Benefits of serverless

Function:Standalone, small application dedicated to specific tasks

Serverless provider

Function
Tenant

Deploy
>

* Minimal configuration
* No efforts on server management

* Low cost @

Serverless ecosystem

LENTLRES ST e IS e Of Serverless

Platforms cum f) A- *""M‘”em"‘”

Google CloudPlatform ~ AWS,

syncano «stdliby o':,_ou “CD"E' [0 webtask @®Kubeless §

APEX n ffsnyk @ vanpium Gmash

Enablers @ S)
Development Tools, - - : :
Monitaln (®)searin i3 serverless Q] Svidentie
& Security Solutions 9'

SN = @
2. B3 Twistlock) A

J 2ROVIO Aol.
@ @ Qil’bnb EA NETFLIX THOMSON REUTERS NORDSTROM
' @ctxpedia FUNFILM Robot I\Adobe' (“%lily

Source: https://venturebeat.com/2017/10/22/the-big-opportunities-in-serverless-computing/

o

Lots of questions about serverless

About 30,500,000 results (0.66 seconds)

i A re a p p I ica t i On S reS i Sta n t tO D DO S atta Cks Comparing AWS Lambda performance of Node.js ... - A Cloud Guru

https://read.acloud.guru/comparing-aws-lambda-performance-of-node-js-python-java... v
o Mar 8, 2018 - An updated runtime performance benchmark of all five programming languages
I n S e rve r I e S S ? supported by AWS Lambda. AWS recently announced their support for both C# (Net Core 2.0) and Go
O programming languages for Lambda functions. ... My benchmarks were based on the performance
testing and comparisons

AWS Lambda Go vs. Node.js performance benchmark: updated
https://hackernoon.com/aws-lambda-go-vs-node-js-performance-benchmark-1c88983... v
Jan 17, 2018 - Just this week AWS announced the release of Go for their Lambda ... JS with regard to

* Are functionssecurein serverless? type safety, programming model and performance

Comparing AWS Lambda Runtime Performance across Go, .Net Core ...
https://www.contino.io » Blog ~

Mar 5, 2018 - This article deep dives into AWS Lambda performance metrics and was originally
presented during Sydney Lambda Meetup January 2018

Optimizing AWS Lambda Performance: Cold Starts - New Relic Blog

: .
e Canserverless providers deliver
? https://blog.newrelic.com/2017/01/11/aws-lambda-cold-start-optimization/ ~
Jan 11,2017 ing A rf a an hel
guaranteed performance? g A Tkt et i cha bt

My Accidental 3—5x Speed Increase of AWS Lambda Functions
https://serverless.zone/my-accidental-3-5x-speed-increase-of-aws-lambda-functions-6... v

[N] Dec 11, 2016 - Today You Learned: Memory options in Lambda impact on overall function performance,
including 1/0, network and CPU. What about the price

We need better methodology and more systematic
measurementto answer these questions

Contributions

* In-depth study of resource management and performance

Isolationin < > Q

AWS Lambda Azure Functions Google Cloud Functions

* |dentify opportunitiesto improve serverless platforms
o AWS: Bad performance isolation, function consistency issue, ...
o Azure: Unpredictable performance, tenant isolation issues, ...
o Google: Resource accounting bug, ...

¢ Open'Source measurement tool
(https://github.com/liangw89/faas_measure) @

Overview

e Background
* Methodology

* Highlighted results
o Serverless architectures
o Resource scheduling
o Performance isolation
o Bugs

How serverless works

A functionrunsin a container (function instance) launched by the
provider with limited CPU/memory/executiontime

Serverless provider

User

A

Request

>

VM N\

: 4
Container Launch
Function

Response

How serverless works

The function instance will be frozen after returning from invocation

Serverless provider

User

A

New requests: Reactivated

Tenants don’t need to pay

while instances are paused @

How serverless works

Providers manage backend infrastructures and resource for tenants

Serverless provider

User

Concurrent requests

\A4

Responses

kl—l
a bk
P
(@]
m‘
o °
c %
©

Methodology

Invoke measurement functions many times (50K+) under various settings
from vantage points in the same cloud reglon

o AWS Lambda

~ <

Azure Functions

Google Cloud Functions

el

Measurement function :
* Collectinformation via procfs/cmd/env
: * Execute performance tests

! Setting variables:

: « Function memory

: * Function language
: * Request frequency
* Concurrent request

Time:
: July-Dec 2017, May 2018 @

Tool 1: Map requests to instances

Which instance handled the request?

Instance identification:
Write a unique file on /tmp = persistent during instance lifetime

Request 1 >

Result + “inst1.txt”

(new inst!) D D
Request 2
4 J > instl.txt inst2.txt
Result + “inst1.txt” \ A
(instl ran again!) E é

Request 3

Inst1 Inst2

>

< Result + “inst2.txt”
(new inst!)

Tool 2: Map instances to VMs

Are instances on the same VM?

VM identification:

 AWS: An entry in the /proc/self/cgroup 2:cpu:/sandbox-root-j88bAzZ/:
e Azure: The WEBSITE _INSTANCE_ID environment Variable seionisssseasicizesssisoeioosssersors
* Google: Unknown

Verified via |/O-based and Flush-Reload coresidency tests

VM ID = abc

4 VM1 Y4 VM2 R
Requests VMID = abc
—
m VM ID = xyz — D
—
Results D

+1nst ID _ JAN y
+VM D @

Highlighted results

e Serverless architectures
* Resource scheduling
 Performance isolation

* Bugs

Do multiple tenants’ instances run on the same VM?

AWS Azure
f VM2 \ (VM1 \
Tenant B Tenant A Tenant B
fuﬁ3 funcl func2 ﬁ
_ J \& =/

AWS: No =2 VM only hosts functions from single tenant

Azure:
e 2017: Yes 2 VM hosts functions from multiple tenants
e 2018: No. But other platforms still do this: Spotinst, stdlib, webtask.io

Google: Unknown

Cross-tenant VM sharing make applications @
vulnerable to side-channel attacks ;

Do VMs have the same configurations?

Methodology: Examine procfs and env variables of the host VMs of 50 K function instances

AWS: 5 CPU configurations (1 or 2 vCPUs, 4 CPU models)
Azure: 9 configurations (1 or 2 or 4 vCPUs, 4 CPU models)
Google: 4 configurations (4 CPU models)

Azure
AWS

2x23 1x24

Different types of VMs could result in @
differentinstance performance ’

Highlighted results

e Serverless architectures
* Resource scheduling
 Performance isolation

* Bugs

Can the platforms effectively handle concurrent requests?

Methodology: send N concurrent requests and examine the number of instances
running concurrently

:AWS: N

EGoogIe: N/2
/;Azure: 10

a

Instance

N* #'Requests

Azure/Google: Don’t deliver promised scalability

0

How long does it take to launch an instance?

EMedian coldstart latency of 1000 instancesg : Median coldstart latency per hour over :
: = 7 days (2017)

. AWS: 160 ms :
| | | | | | | | | | | \AW\S 7\

12 24 36 48 60 72 84 96 108 120 132 144 156 168.
1600 T T T T T T T T T T

. Google: 500 ms (2017) o n l M " Google -]

- 2000 ms (2018) e

12 24 36 48 60 72 84 96 108 120 132 144 156 168%
T T M s
Azure i

= F T T T i

FT T T T 11 == T

Azure: 3600 ms (2017) 555‘3888
= - 300 ms (2018)

12 24 36 48 60 72 84 96 108 120 132 144 156 1GSE
Tue Wed Thu Fri Sat Sun -

<.
o
S

Coldstart might affect tail latencies @

Highlighted results

e Serverless architectures
* Resource scheduling
* Performance isolation

* Bugs

What can affect performance?

* CPU share: fraction of 1000-ms time period for which the instance can use CPU
* 10 throughput: Write 512 KB of data to the local disk 1,000 times (via dd or scripts)
* Network throughput: Use iperf3 to run the throughput test for 10 seconds

Factors affecting performance:

AWS Azure Google
Coresidency Yes Yes Unknown I
VM configuration No Yes No

o

How instances are placed on VMs

AWS: Bin-packing; use at most 3328 MB VM memory

Azure: Random

Google: Unknown
AWS: No. of VMs being used for a given

10 number of instances (128 MB) 25 * 128 MB insts: 1 VM
50 * 128 MB insts: 2 VMs
8 (1) s
< soceoe 200 * 128 MB insts: 8 VMs
< 6 00000
"'6 000000
s 4 YYYYS AWS Lambda VM
= ecose memory utilization:
2 eco00
scocse 85-100%
0
0 50 100 150 200

No. of instances
AWS: Easy for instances from the same tenant to be coresident@)

Coresident instances contend for VM resources

Azure AWS
Netowrk Network
M 1instance M6 instances M 1instance M 20 instances

(Estimated based on the median performance across coresident instances, over 50 rounds)

Resources are allocated per VM i
More co-residency decreases resources per function \W)

o
0

23

Coresident instances contend for VM resources

Azure
Netowrk Network
M 1instance M6 instances B 1instance M 20 instances

(Estimated based on the median performance across coresident instances, over 50 rounds)

Resources are allocated per VM i
More co-residency decreases resources per function \W)

o
0

24

AWS/Google: CPU share is proportional to memory

AWS: Functions of 128 MB memory can use CPU for 80 ms in 1000 ms
Functions of 1.5 GB memory can use CPU for 900 ms in 1000 ms

» CPU share s Mem*2/3328 ¢ CPU share
L | | 2] 1 [T | To]
gO'S = -f='=fTH 5 e
20.6 |- lmm 3 -
0.4 | il 0.5 |- 4 N
0.2 | sttt = '
- L ¥
0 k& l l | — l l l
0 500 1,000 1,500 0 1,000 2,000
Function memory (MB) Function memory (MB)
AWS Google

More memory --> More CPU --> Better performance@

25

What can affect performance?

* CPU share: fraction of 1000-ms time period for which the instance can use CPU
* 10 throughput: Write 512 KB of data to the local disk 1,000 times (via dd or scripts)
* Network throughput: Use iperf3 to run the throughput test for 10 seconds

Factors affecting performance:

AWS Azure Google
Coresidency Yes Yes Unknown
IVM configuration No Yes No I

o

Azure: VM configurations affect performance

Azure:
CPU share m0-60% m60%-80%
100%
g S0 4-vCPU VMs get 1.5x 10 throughput,
g 60% 2x network throughput,
;§ 40% and more CPU than other types of VMs
X

20%
32.2% 0.5%

1 or 2 vCPUs 4 vCPUs
Same function + fewer resources
= longer running time = more money @

Highlighted results

e Serverless architectures
* Resource scheduling
 Performance isolation

* Bugs

Can AWS propagate function updates correctly?

Methodology:
50 concurrent requests e
>
® *
InstancesetA
Memory func func’
Update |AM roles j
@ 1 of: Environment variable | Tt >
Function code
>
func’
50 concurrent requests
O -]
-
InstancesetB

Did any instances in set B run func instead of func’? @

AWS: Inconsistent function usage

......
%’j ~~~~~~~~ S |‘ %j '''''''' S j|

d—) d=—3

3.8% (out of 20K) ran an inconsistent or outdated function

AWS: Inconsistent function usage

.............
/’j ~~~~~ 5 /j ~~~~~~ 2

d—) d=—3

3.8% (out of 20K) ran an inconsistent or outdated function

 Case 1l: New instancesranoutdated functions (0.1%)

AWS: Inconsistent function usage

7 sl 20

3.8% (out of 20K) ran an inconsistent or outdated function

 Case 1l: New instancesranoutdated functions (0.1%)

* Case 2: Requestshandled bytheinstances for outdated functions (3.7%)

o

AWS: Inconsistent function usage

7 sl 20

3.8% (out of 20K) ran an inconsistent or outdated function

 Case 1l: New instancesranoutdated functions (0.1%)

* Case 2: Requestshandled bytheinstances for outdated functions (3.7%)

Inconsistent responses to users @

Google: Stealthy background process

Processes can run after function invocation concluded

Method:

Nodejs will execute line B

without waiting for
user_task returns

exports.handler = function handler(req, res) {
// run asynchronous task here.

line A: user_task();
// send back results
line B: res.status(http_code).send(user_data);

}

* Processes can stay alive for to 21 hours
* No billing = Use extra resources for free!

Google: Stealthy background process

Processes can run after function invocation concluded

Nodejs will execute line B
Method: without waiting for
user_task returns

exports.handler = function handler(req, res) {
// run asynchronous task here.

line A: user_task();
// send back results
line B: res.status(http_code).send(user_data);

}

Google should monitor the resource usage of the entire
function instance rather than the Nodejs processes @

35

Summary

* In-depth measurement study that discover various issues

in three serverless computing platforms
o Unpredictable performance
o Bad performanceisolation
o Consistencyissues

* Performance baselines and design considerationsfor
future design of serverless platforms

* Responsibledisclosure

