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Random Test Database Is Deficient!

 The random test database 
has the same database 
schema and data 
characteristics as database 
generated by dbgen.

 There are huge execution 
cost differences between 
realistic database (dbgen) 
and synthetic database 
(random).

Comparing the query latencies over database 
generated by dbgen and database randomly generated.

The average relative error of query latencies is 175%!! 
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Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Output



Comparison to Related Works

 The performance of state-of-the-art solutions remains far from satisfactory.

QAGen
SIGMOD 2007

WAGen
VLDB 2010

DCGen
SIGMOD 2011

MyBenchmark
VLDBJ 2014

Touchstone
ATC 2018

Full Parallelization No No Yes No Yes

Linear Scalability No No No No Yes

Austere Mem Consumption No No No No Yes

Wide Workload Support No No No No Yes

Minimal Human Effort Yes Yes No Yes Yes

Touchstone is the first query-aware data generator which can support full parallel 
data generation on multiple nodes. And Touchstone is capable of supporting 
industrial scale database generation.



Why do Previous Studies not Work?

 Primitive data generation algorithm

− Can not support fully parallel data generation in a distributed 
environment;

− Can not support the non-equi-join workload.

 Huge intermediate state dataset

− The memory consumption strongly depends on the size of generation 
outputs;

− Is not scalable in generation database size.



How does Touchstone Solve These Problems?

 New query instantiation scheme

− Algorithms: binary search, random sampling;

− Function: instantiating all the variable parameters.

 New data generation scheme

− Algorithms: data generation using constraint chains, data compression on 
join information table;

− Function: facilitating parallel data generation on multiple nodes with 
austere memory consumption.
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 Query instantiation
‒ Initialize random column 

generators;
‒ Instantiate symbolic query 

parameters.

 Data generation
‒ Decompose the query trees 

annotated with cardinality 
constraints into constraint 
chains;

‒ Generate data in parallel on 
multiple nodes.
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Experiments

 Test environment

‒ Cluster: 8 nodes

‒ CPU: 2 * Intel Xeon E5-2620 @ 2.0 GHz

‒ DRAM: 64GB

‒ Disk: 3TB HDD configured in RAID-5

‒ Network: 1 Gigabit Ethernet

 Test workloads

‒ TPC-H benchmark (the first 16 queries) & Star schema benchmark (all 13 queries)

 Comparison

‒ MyBenchmark [VLDBJ 2014]



Touchstone outperforms MyBenchmark on 
data generation throughput by orders



The memory consumption of Touchstone is 
minimal



Touchstone has linear scalability



The workload on synthetic database matches the 
expectation on result cardinality and  query latency



Limitations & Conclusion

 Limitations:

‒ Touchstone does not support filters on key columns;

‒ Equality constraints over filters involving multiple columns are not supported;

‒ Equi-joins on columns with no reference constraint are not supported;

‒ Touchstone does not support the database schema with cyclic reference 
relationship.

 Conclusion:

‒ Touchstone is a query-aware data generator with characteristics of completely 
parallelizable and bounded usage to memory. And Touchstone is linearly 
scalable to computing resource and data scale.



Thank you!!         Q & A

https://github.com/daseECNU/Touchstone.



Test Databases Are Important!

 Applications: DBMS testing, database application testing, application-
driven benchmarking.



Random Column Generator

 Random index generator 
outputs indexes from 0 to n-1 
while n is the specified 
cardinality, and manipulates 
the data distribution of 
column values.

 Index2Value transformer 
deterministically maps the 
index to a concrete value in 
the specified domain of the 
column.



Query Instantiation

 The query instantiation is responsible for handling three types of 
cardinality constraints, i.e., 𝑪=

𝝈 , 𝑪≠
𝝈 , 𝑪≠

⋈. The fourth type of constraints 
𝐶=
⋈ is taken care of by the data generation process at runtime.

This is an iterative process!



Equality Constraints over Filters

6 / ((1-20%)*50) = 15%

(40-32) / 40 = 20% Size of table T: 50

 (1) Randomly select an index and 
obtain the corresponding value for 
instantiating the parameter;

 (2) Update the occurrence 
probability of the selected index in 
the column generator;

 (3) Calculate the cumulative 
probabilities in the probability 
table.



Non-Equality Constraints over Filters

 Run a binary search over the 
parameter domain to find the 
optimal concrete parameter based 
on the fixed column data 
distribution.

 Using the random sampling 
algorithm to evaluate the 
probability of tuples satisfying the 
instantiated predicate.

Parameter searching procedure



Non-Equality Constraints over Joins

 We must process the constraints in a bottom-up manner, because the 
columns involved in constraints 𝐶≠

⋈ may overlap with the columns in the 
child nodes.

Probability is not independent!

The processing strategy for each constraint in 𝐶≠
⋈ is the same as the constraint 

in 𝐶≠
𝜎 (binary search & random sampling).



Data Generation

 The data generation component is responsible for assembling tuples 
based on the outputs of the column generators.

 The key technical challenge here is to meet the equality constraints over 
the join operators, i.e., 𝑪=

⋈, which involve the dependencies among 
primary and foreign keys from multiple tables.



Compilation Step

Focus on the manipulation of primary key and foreign keys.



Assembling Step

 (1) Incrementally assign a 
primary key;

 (2) Fill values in the non-key 
columns by calling the random 
column generators;

 (3) Identify the appropriate 
candidate referenced keys for 
each foreign key;

 (4) Maintain the join 
information of the primary key.

Store up to
L values!



Handling Mismatch Cases

 There are some joinability
statuses of the primary key that 
never occur!

 Therefore, in the tuple 
generation, it should be avoided 
to search such referenced 
primary key.

 The main idea is to add rules to 
manipulate relevant FK 
constraints. An example of adjustments to FK constraints


