
Touchstone: Generating Enormous
Query-Aware Test Databases

Yuming Li1, Rong Zhang1, Xiaoyan Yang2,

Zhenjie Zhang2, Aoying Zhou1

1DaSE at East China Normal University
2Singapore R&D, Yitu Technology Ltd.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Test Databases Are Important!

 Application scenarios: DBMS testing, database application testing,
application-driven benchmarking.

Random Test Database Is Deficient!

 The random test database
has the same database
schema and data
characteristics as database
generated by dbgen.

 There are huge execution
cost differences between
realistic database (dbgen)
and synthetic database
(random).

Comparing the query latencies over database
generated by dbgen and database randomly generated.

The average relative error of query latencies is 175%!!

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Parameterized
queries

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Variable
parameters

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Cardinality
constraints

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

All 14
cardinality
constraints

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Cardinality
constraints
on Q1

c1 c2

c3

Query-Aware Data Generation

 Input: database schema, data characteristics and workload characteristics.

 Output: test database and instantiated query parameters.

Output

Comparison to Related Works

 The performance of state-of-the-art solutions remains far from satisfactory.

QAGen
SIGMOD 2007

WAGen
VLDB 2010

DCGen
SIGMOD 2011

MyBenchmark
VLDBJ 2014

Touchstone
ATC 2018

Full Parallelization No No Yes No Yes

Linear Scalability No No No No Yes

Austere Mem Consumption No No No No Yes

Wide Workload Support No No No No Yes

Minimal Human Effort Yes Yes No Yes Yes

Touchstone is the first query-aware data generator which can support full parallel
data generation on multiple nodes. And Touchstone is capable of supporting
industrial scale database generation.

Why do Previous Studies not Work?

 Primitive data generation algorithm

− Can not support fully parallel data generation in a distributed
environment;

− Can not support the non-equi-join workload.

 Huge intermediate state dataset

− The memory consumption strongly depends on the size of generation
outputs;

− Is not scalable in generation database size.

How does Touchstone Solve These Problems?

 New query instantiation scheme

− Algorithms: binary search, random sampling;

− Function: instantiating all the variable parameters.

 New data generation scheme

− Algorithms: data generation using constraint chains, data compression on
join information table;

− Function: facilitating parallel data generation on multiple nodes with
austere memory consumption.

Overall Architecture

 Query instantiation
‒ Initialize random column

generators;
‒ Instantiate symbolic query

parameters.

 Data generation
‒ Decompose the query trees

annotated with cardinality
constraints into constraint
chains;

‒ Generate data in parallel on
multiple nodes.

Overall Architecture

 Query instantiation
‒ Initialize random column

generators;
‒ Instantiate symbolic query

parameters.

 Data generation
‒ Decompose the query trees

annotated with cardinality
constraints into constraint
chains;

‒ Generate data in parallel on
multiple nodes.

Determine the data
distribution of columns

Overall Architecture

 Query instantiation
‒ Initialize random column

generators;
‒ Instantiate symbolic query

parameters.

 Data generation
‒ Decompose the query trees

annotated with cardinality
constraints into constraint
chains;

‒ Generate data in parallel on
multiple nodes.

Experiments

 Test environment

‒ Cluster: 8 nodes

‒ CPU: 2 * Intel Xeon E5-2620 @ 2.0 GHz

‒ DRAM: 64GB

‒ Disk: 3TB HDD configured in RAID-5

‒ Network: 1 Gigabit Ethernet

 Test workloads

‒ TPC-H benchmark (the first 16 queries) & Star schema benchmark (all 13 queries)

 Comparison

‒ MyBenchmark [VLDBJ 2014]

Touchstone outperforms MyBenchmark on
data generation throughput by orders

The memory consumption of Touchstone is
minimal

Touchstone has linear scalability

The workload on synthetic database matches the
expectation on result cardinality and query latency

Limitations & Conclusion

 Limitations:

‒ Touchstone does not support filters on key columns;

‒ Equality constraints over filters involving multiple columns are not supported;

‒ Equi-joins on columns with no reference constraint are not supported;

‒ Touchstone does not support the database schema with cyclic reference
relationship.

 Conclusion:

‒ Touchstone is a query-aware data generator with characteristics of completely
parallelizable and bounded usage to memory. And Touchstone is linearly
scalable to computing resource and data scale.

Thank you!! Q & A

https://github.com/daseECNU/Touchstone.

Test Databases Are Important!

 Applications: DBMS testing, database application testing, application-
driven benchmarking.

Random Column Generator

 Random index generator
outputs indexes from 0 to n-1
while n is the specified
cardinality, and manipulates
the data distribution of
column values.

 Index2Value transformer
deterministically maps the
index to a concrete value in
the specified domain of the
column.

Query Instantiation

 The query instantiation is responsible for handling three types of
cardinality constraints, i.e., 𝑪=

𝝈 , 𝑪≠
𝝈 , 𝑪≠

⋈. The fourth type of constraints
𝐶=
⋈ is taken care of by the data generation process at runtime.

This is an iterative process!

Equality Constraints over Filters

6 / ((1-20%)*50) = 15%

(40-32) / 40 = 20% Size of table T: 50

 (1) Randomly select an index and
obtain the corresponding value for
instantiating the parameter;

 (2) Update the occurrence
probability of the selected index in
the column generator;

 (3) Calculate the cumulative
probabilities in the probability
table.

Non-Equality Constraints over Filters

 Run a binary search over the
parameter domain to find the
optimal concrete parameter based
on the fixed column data
distribution.

 Using the random sampling
algorithm to evaluate the
probability of tuples satisfying the
instantiated predicate.

Parameter searching procedure

Non-Equality Constraints over Joins

 We must process the constraints in a bottom-up manner, because the
columns involved in constraints 𝐶≠

⋈ may overlap with the columns in the
child nodes.

Probability is not independent!

The processing strategy for each constraint in 𝐶≠
⋈ is the same as the constraint

in 𝐶≠
𝜎 (binary search & random sampling).

Data Generation

 The data generation component is responsible for assembling tuples
based on the outputs of the column generators.

 The key technical challenge here is to meet the equality constraints over
the join operators, i.e., 𝑪=

⋈, which involve the dependencies among
primary and foreign keys from multiple tables.

Compilation Step

Focus on the manipulation of primary key and foreign keys.

Assembling Step

 (1) Incrementally assign a
primary key;

 (2) Fill values in the non-key
columns by calling the random
column generators;

 (3) Identify the appropriate
candidate referenced keys for
each foreign key;

 (4) Maintain the join
information of the primary key.

Store up to
L values!

Handling Mismatch Cases

 There are some joinability
statuses of the primary key that
never occur!

 Therefore, in the tuple
generation, it should be avoided
to search such referenced
primary key.

 The main idea is to add rules to
manipulate relevant FK
constraints. An example of adjustments to FK constraints

