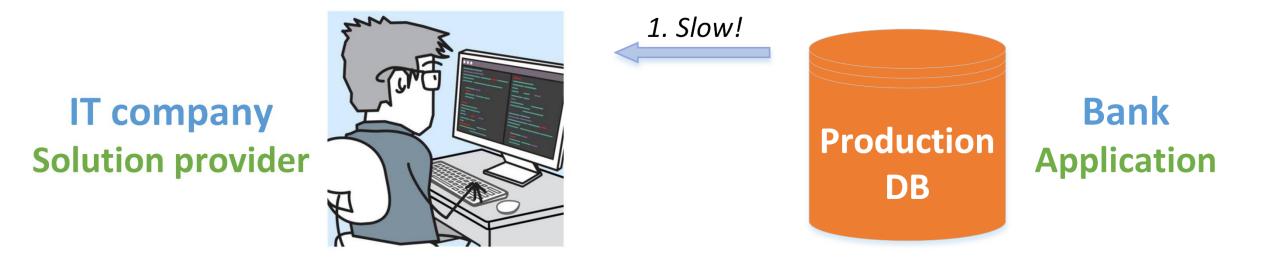
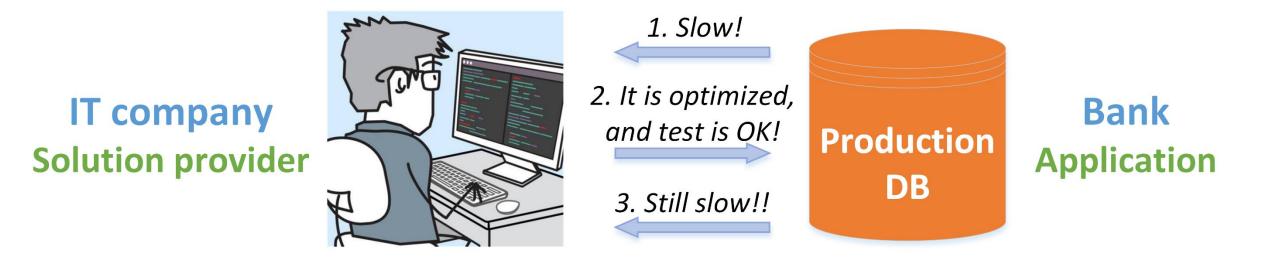
Touchstone: Generating Enormous Query-Aware Test Databases

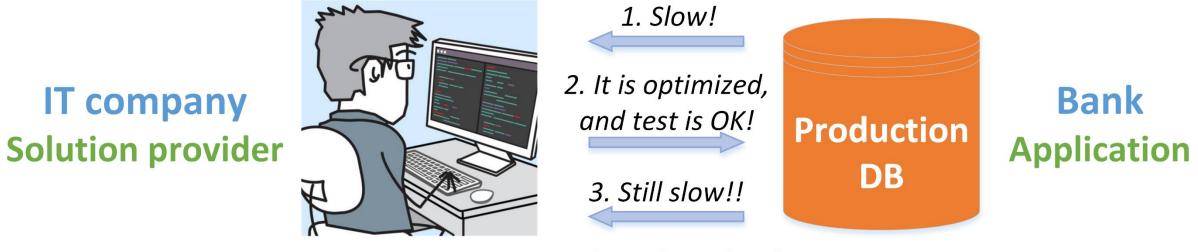
Yuming Li¹, Rong Zhang¹, Xiaoyan Yang², Zhenjie Zhang², Aoying Zhou¹

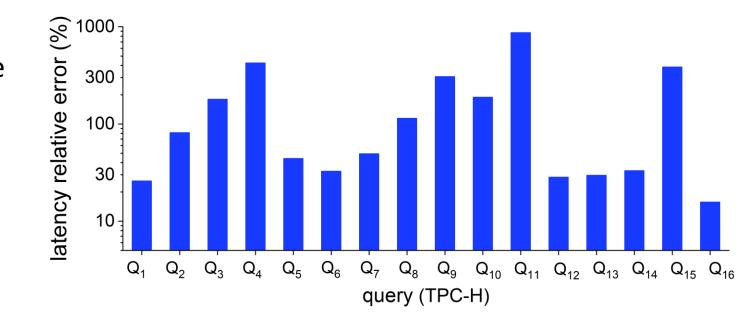
¹DaSE at East China Normal University

²Singapore R&D, Yitu Technology Ltd.

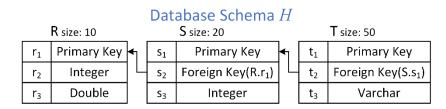








What? Why?


Random Test Database Is Deficient!

- The random test database has the same database schema and data characteristics as database generated by dbgen.
- There are huge execution cost differences between realistic database (dbgen) and synthetic database (random).

Comparing the query latencies over database generated by dbgen and database randomly generated.

The average relative error of query latencies is 175%!!

	Database Schema H						
	R size: 10			S size: 20			T size: 50
r ₁	Primary Key	◄	s_1	Primary Key	4	t ₁	Primary Key
r ₂	Integer	L	S ₂	Foreign Key(R.r ₁)		t ₂	Foreign Key(S.s ₁)
r ₃	Double		S ₃	Integer		t3	Varchar
					I '		

Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.

	Database Schema H						
	R size: 10			S size: 20			T size: 50
r ₁	Primary Key	┫	S_1	Primary Key		t ₁	Primary Key
r ₂	Integer		S ₂	Foreign Key(R.r ₁)		t ₂	Foreign Key(S.s ₁)
r ₃	Double		S ₃	Integer		t3	Varchar

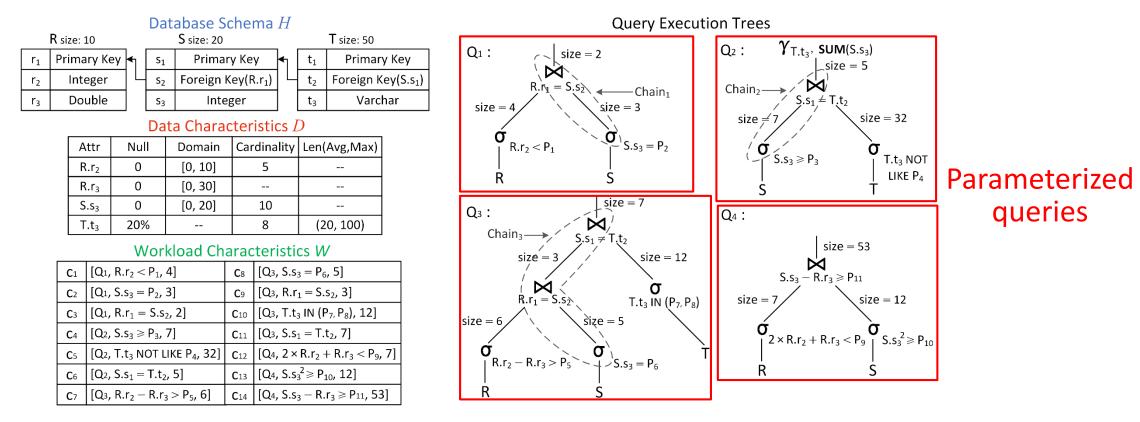
Data Characteristics D

Attr	Null	Domain	Cardinality	Len(Avg,Max)
R.r ₂	0	[0, 10]	5	
R.r ₃	0	[0, 30]		
S.s ₃	0	[0, 20]	10	
T.t ₃	20%		8	(20, 100)

Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.

	Database Schema H						
	R size: 10			S size: 20	_		T size: 50
r ₁	Primary Key	⊾	S_1	Primary Key		t ₁	Primary Key
r ₂	Integer		S ₂	Foreign Key(R.r ₁)	L	t ₂	Foreign Key(S.s ₁)
r ₃	Double		S ₃	Integer		t3	Varchar
		•			•		

Data Characteristics D


Attr	Null	Domain	Cardinality	Len(Avg,Max)
$R.r_2$	0	[0, 10]	5	
R.r₃	0	[0 <i>,</i> 30]		
S.s ₃	0	[0, 20]	10	
T.t ₃	20%		8	(20, 100)

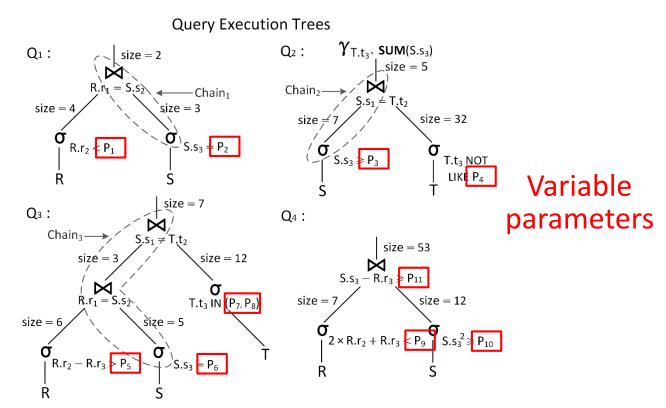
Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.

ъ·			Database Schema H					
r siz	e: 10		S size: 20			T size: 50		
r ₁ Prii	mary Key 🗲	S ₁	Primary Key	┣┓	t ₁	Primary Key		
r ₂ I	nteger	S ₂	Foreign Key(R.r ₁)] L	t ₂	Foreign Key(S.s ₁)		
r ₃ [Double	SB	Integer		t3	Varchar		

Data Characteristics D

Attr	Null	Domain	Cardinality	Len(Avg,Max)
R.r ₂	0	[0, 10]	5	
R.r ₃	0	[0 <i>,</i> 30]		
S.s ₃	0	[0, 20]	10	
T.t ₃	20%		8	(20, 100)

Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.


			Dat	abase Schema	H		
	R size: 10			S size: 20			T size: 50
r ₁	Primary Key	┫	S_1	Primary Key	┣┓	t1	Primary Key
r ₂	Integer		S ₂	Foreign Key(R.r ₁)] [t ₂	Foreign Key(S.s ₁)
r ₃	Double		S ₃	Integer		t3	Varchar

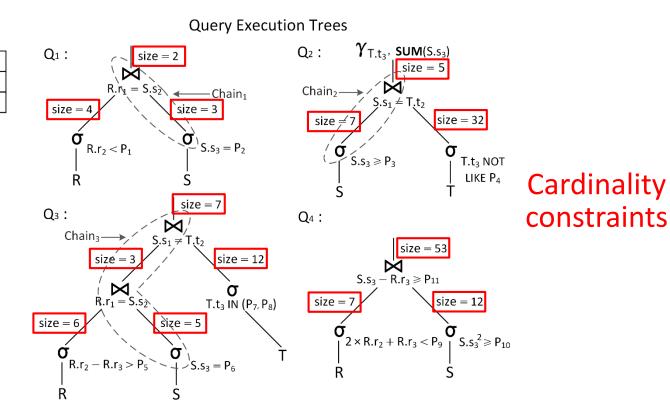
Data Characteristics D

Attr	Null	Domain	Cardinality	Len(Avg,Max)
$R.r_2$	0	[0, 10]	5	
$R.r_3$	0	[0, 30]		
$S.s_3$	0	[0 <i>,</i> 20]	10	
T.t ₃	20%		8	(20, 100)

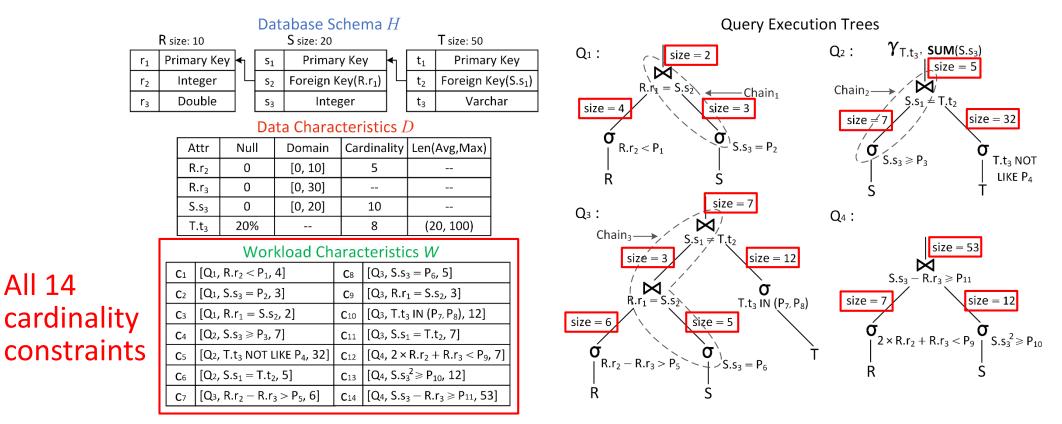
Workload Characteristics W

C 1	$[Q_1, R.r_2 < P_1, 4]$	C 8	$[Q_3, S.s_3 = P_6, 5]$
C 2	$[Q_1, S.s_3 = P_2, 3]$	C 9	$[Q_3, R.r_1 = S.s_2, 3]$
C 3	$[Q_1, R.r_1 = S.s_2, 2]$	C 10	[Q ₃ , T.t ₃ IN (P ₇ , P ₈), 12]
C 4	$[Q_2, S.s_3 \ge P_3, 7]$	C 11	$[Q_3, S.s_1 = T.t_2, 7]$
C 5	[Q ₂ , T.t ₃ NOT LIKE P ₄ , 32]	C 12	$[Q_4, 2 \times R.r_2 + R.r_3 < P_9, 7]$
C 6	$[Q_2, S.s_1 = T.t_2, 5]$	C 13	$[Q_4, S.s_3^2 \ge P_{10}, 12]$
C 7	$[Q_3, R.r_2 - R.r_3 > P_5, 6]$	C 14	$[Q_4, S.s_3 - R.r_3 \ge P_{11}, 53]$

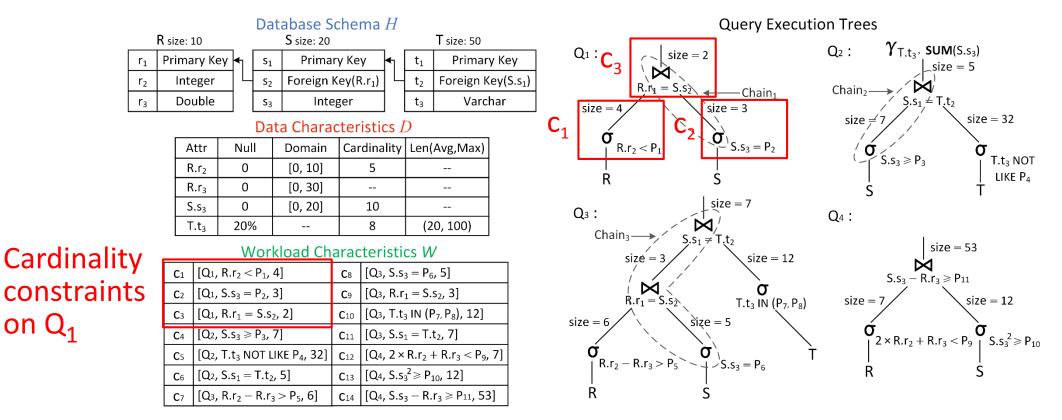
Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.


	Database Schema H						
	R size: 10			S size: 20			T size: 50
r ₁	Primary Key	∙	S_1	Primary Key	┥	t1	Primary Key
r ₂	Integer	Ч	S ₂	Foreign Key(R.r ₁)		t ₂	Foreign Key(S.s ₁)
r ₃	Double		S ₃	Integer		t3	Varchar

Data Characteristics D


Attr	Null	Domain	Cardinality	Len(Avg,Max)
$R.r_2$	0	[0, 10]	5	
$R.r_3$	0	[0, 30]		
$S.s_3$	0	[0, 20]	10	
T.t ₃	20%		8	(20, 100)

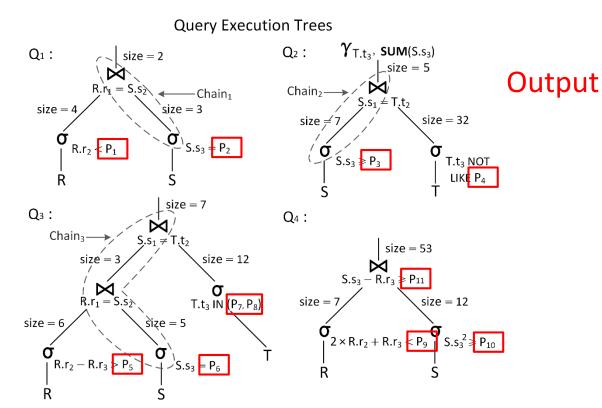
Workload Characteristics W


C 1	$[Q_1, R.r_2 < P_1, 4]$	C8	$[Q_3, S.s_3 = P_6, 5]$
C 2	$[Q_1, S.s_3 = P_2, 3]$	C 9	$[Q_3, R.r_1 = S.s_2, 3]$
C 3	$[Q_1, R.r_1 = S.s_2, 2]$	C 10	[Q ₃ , T.t ₃ IN (P ₇ , P ₈), 12]
C 4	$[Q_2, S.s_3 \ge P_3, 7]$	C 11	$[Q_3, S.s_1 = T.t_2, 7]$
C 5	[Q ₂ , T.t ₃ NOT LIKE P ₄ , 32]	C 12	$[Q_4, 2 \times R.r_2 + R.r_3 < P_9, 7]$
C 6	$[Q_2, S.s_1 = T.t_2, 5]$	C 13	$[Q_4, S.s_3^2 \ge P_{10}, 12]$
C 7	$[Q_3, R.r_2 - R.r_3 > P_5, 6]$	C 14	$[Q_4, S.s_3 - R.r_3 \ge P_{11}, 53]$

All 14

on Q₁

Input: database schema, data characteristics and workload characteristics.
 Output: test database and instantiated query parameters.


_	Database Schema H							
ſ	R size: 10		S size: 20		_	T size: 50		
I	r ₁	Primary Key	◀	S ₁	Primary Key	4	t ₁	Primary Key
I	r ₂	Integer		S ₂	Foreign Key(R.r ₁)		t ₂	Foreign Key(S.s ₁)
I	r ₃	Double		S ₃	Integer		t3	Varchar
L								

Data Characteristics D

Attr	Null	Domain	Cardinality	Len(Avg,Max)
$R.r_2$	0	[0, 10]	5	
$R.r_3$	0	[0, 30]		
$S.s_3$	0	[0 <i>,</i> 20]	10	
T.t ₃	20%		8	(20, 100)

Workload Characteristics W

C 1	$[Q_1, R.r_2 < P_1, 4]$	C 8	$[Q_3, S.s_3 = P_6, 5]$
C 2	$[Q_1, S.s_3 = P_2, 3]$	C 9	$[Q_3, R.r_1 = S.s_2, 3]$
C 3	$[Q_1, R.r_1 = S.s_2, 2]$	C 10	[Q ₃ , T.t ₃ IN (P ₇ , P ₈), 12]
C 4	$[Q_2, S.s_3 \ge P_3, 7]$	C 11	$[Q_3, S.s_1 = T.t_2, 7]$
C 5	[Q ₂ , T.t ₃ NOT LIKE P ₄ , 32]	C 12	$[Q_4, 2 \times R.r_2 + R.r_3 < P_9, 7]$
C 6	$[Q_2, S.s_1 = T.t_2, 5]$	C 13	$[Q_4, S.s_3^2 \ge P_{10}, 12]$
C 7	$[Q_3, R.r_2 - R.r_3 > P_5, 6]$	C 14	$[Q_4, S.s_3 - R.r_3 \ge P_{11}, 53]$

Comparison to Related Works

The performance of state-of-the-art solutions remains far from satisfactory.

	QAGen SIGMOD 2007	WAGen VLDB 2010	DCGen SIGMOD 2011	MyBenchmark VLDBJ 2014	Touchstone ATC 2018
Full Parallelization	No	No	Yes	No	Yes
Linear Scalability	No	No	No	No	Yes
Austere Mem Consumption	No	No	No	No	Yes
Wide Workload Support	No	No	No	No	Yes
Minimal Human Effort	Yes	Yes	No	Yes	Yes

Touchstone is the **first** query-aware data generator which can support **full parallel** data generation on **multiple nodes**. And Touchstone is capable of supporting **industrial scale** database generation.

Why do Previous Studies not Work?

Primitive data generation algorithm

- Can not support fully parallel data generation in a distributed environment;
- Can not support the non-equi-join workload.

Huge intermediate state dataset

- The memory consumption strongly depends on the size of generation outputs;
- Is not scalable in generation database size.

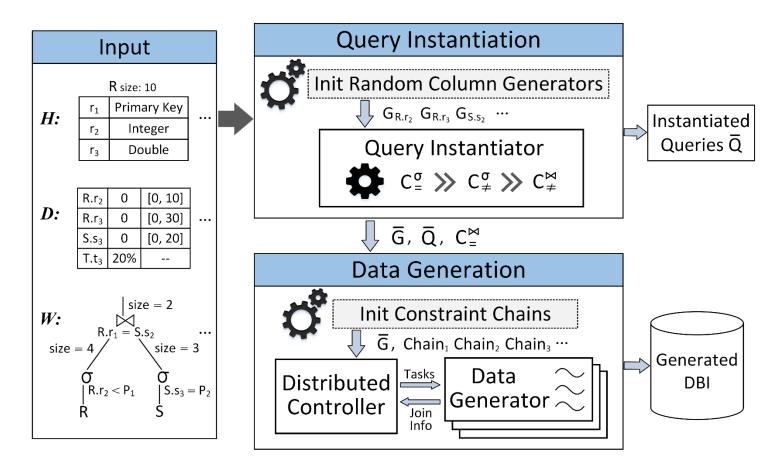
How does Touchstone Solve These Problems?

New query instantiation scheme

- Algorithms: binary search, random sampling;
- Function: instantiating all the variable parameters.

New data generation scheme

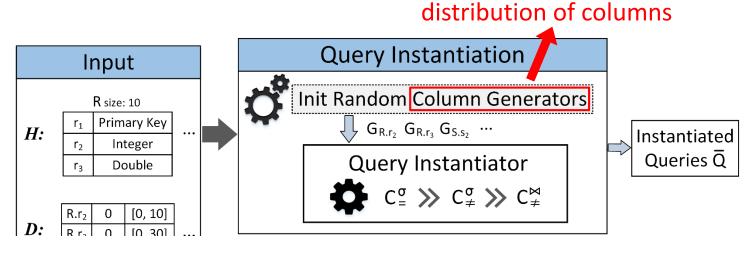
- Algorithms: data generation using constraint chains, data compression on join information table;
- Function: facilitating parallel data generation on multiple nodes with austere memory consumption.


Overall Architecture

Query instantiation

- Initialize random column generators;
- Instantiate symbolic query parameters.

Data generation


- Decompose the query trees annotated with cardinality constraints into constraint chains;
- Generate data in parallel on multiple nodes.

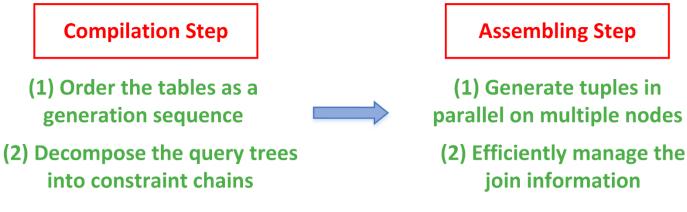
Overall Architecture

Query instantiation

- Initialize random column generators;
- Instantiate symbolic query parameters.
- Data generation
- Decompose the query trees annotated with cardinality Equ constraints into constraint chains;
- Generate data in parallel (multiple nodes.

Determine the data

Equality constraints
over filtersNon-Equality
constraints over filtersNon-Equality
constraints over joins $S.s_3 = P_2$
T.t_3 NOT LIKE P_4 $R.r_2 < P_1$
 $R.r_2 - R.r_3 > P_5$ $S.s_3 - R.r_3 \ge P_{11}$

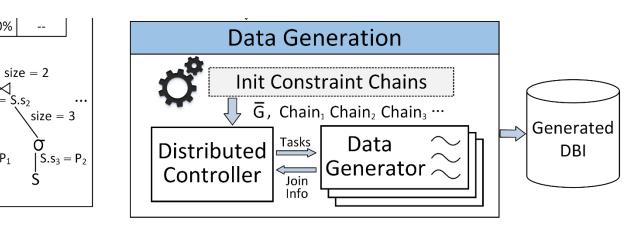

Overall Architecture

Query instantiation

- Initialize random column generators;
- Instantiate symbolic query parameters.

Data generation

- Decompose the query trees annotated with cardinality constraints into constraint chains;
- Generate data in parallel on multiple nodes.



T.t₃ 20%

 $|R.r_2 < P_1|$

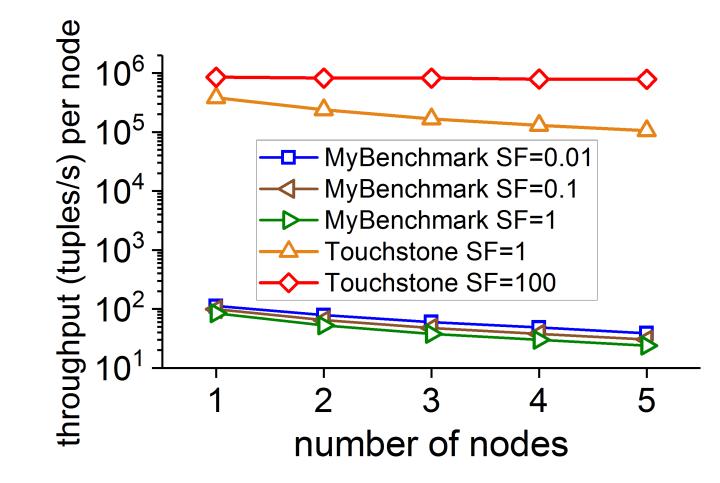
W:

size =

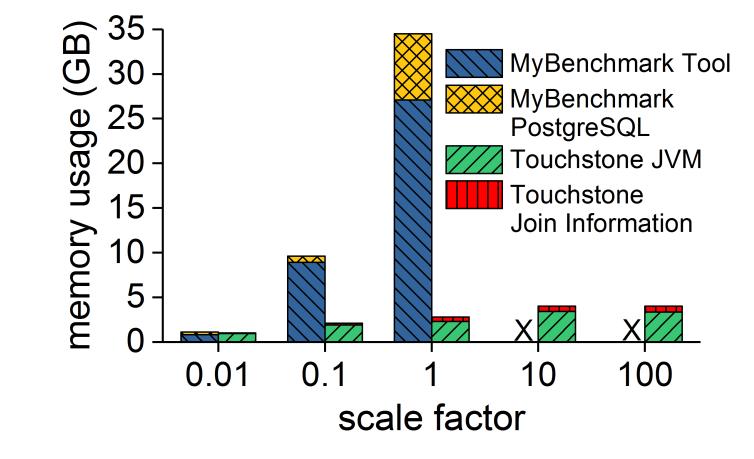
Experiments

Test environment

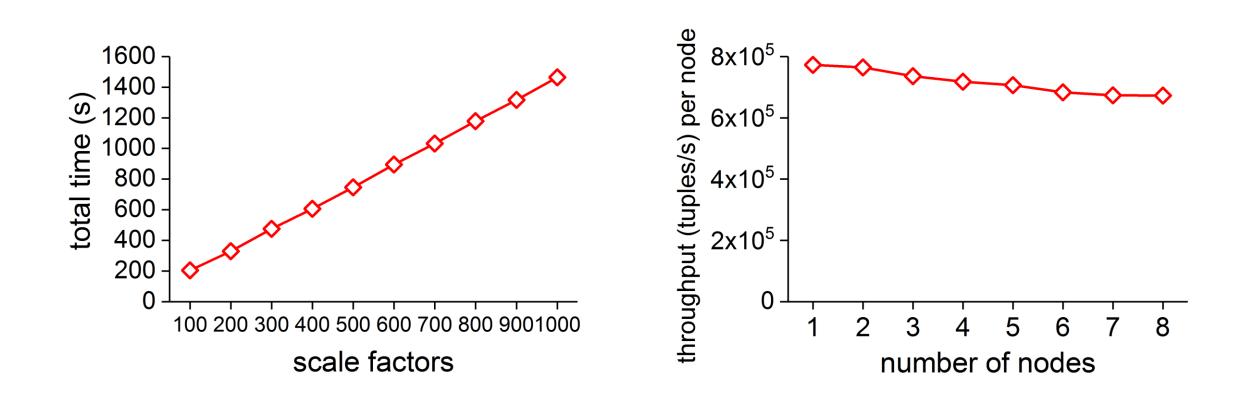
- Cluster: 8 nodes
- CPU: 2 * Intel Xeon E5-2620 @ 2.0 GHz
- DRAM: 64GB
- Disk: 3TB HDD configured in RAID-5
- Network: 1 Gigabit Ethernet

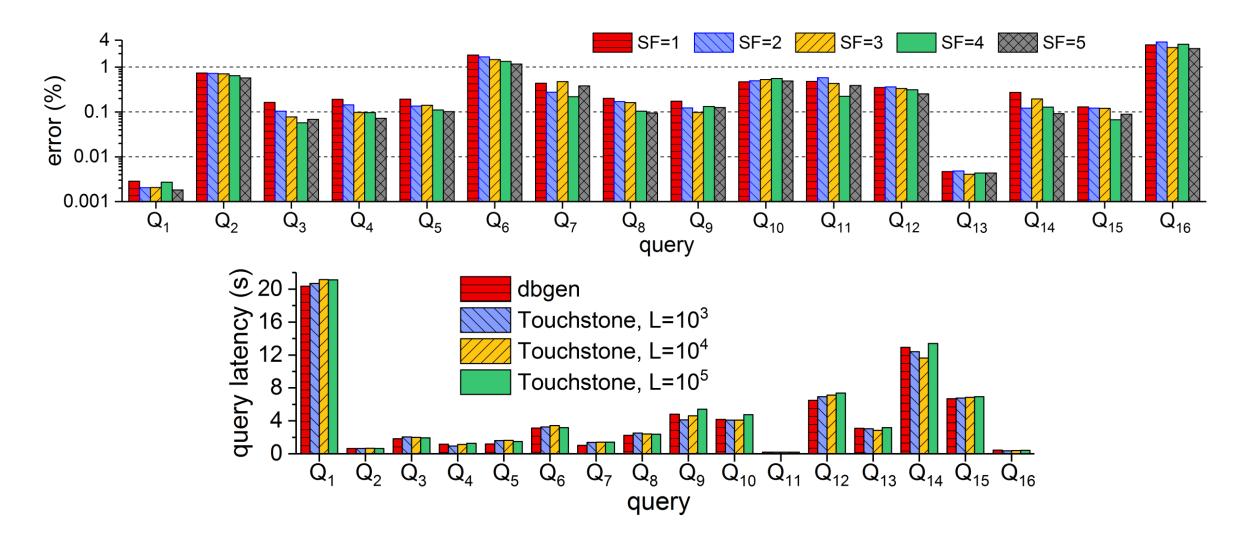

Test workloads

– TPC-H benchmark (the first 16 queries) & Star schema benchmark (all 13 queries)


Comparison

– MyBenchmark [VLDBJ 2014]


Touchstone outperforms MyBenchmark on data generation throughput by orders

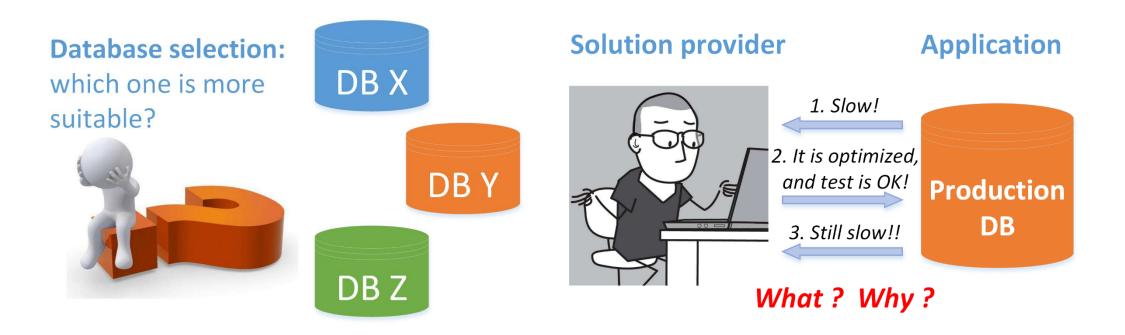

The memory consumption of Touchstone is minimal

Touchstone has linear scalability

The workload on synthetic database matches the expectation on result cardinality and query latency

Limitations & Conclusion

Limitations:

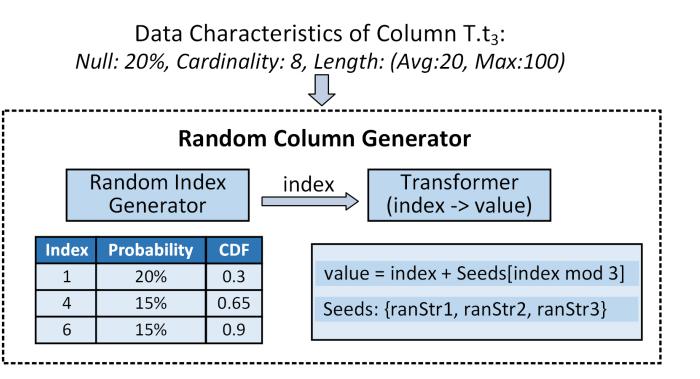

- Touchstone does not support filters on key columns;
- Equality constraints over filters involving multiple columns are not supported;
- Equi-joins on columns with no reference constraint are not supported;
- Touchstone does not support the database schema with cyclic reference relationship.

Conclusion:

 Touchstone is a query-aware data generator with characteristics of completely parallelizable and bounded usage to memory. And Touchstone is linearly scalable to computing resource and data scale.

Thank you!!Q & A

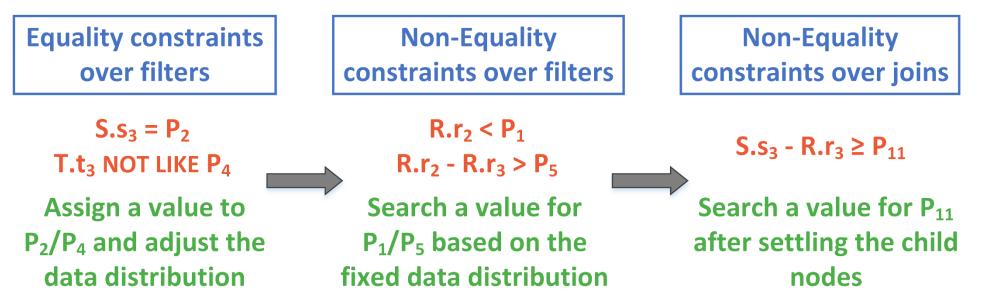
https://github.com/daseECNU/Touchstone.



Random Column Generator

Random index generator

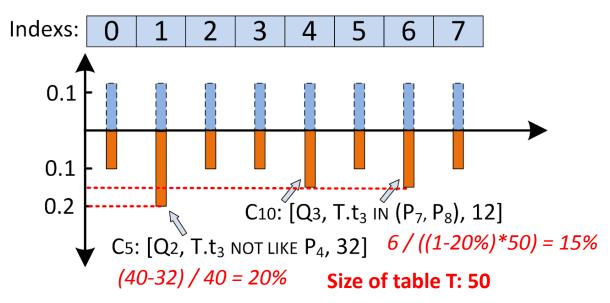
outputs indexes from 0 to n-1 while n is the specified cardinality, and manipulates the data distribution of column values.


Index2Value transformer deterministically maps the index to a concrete value in the specified domain of the column.

Query Instantiation

The query instantiation is responsible for handling three types of cardinality constraints, i.e., C_{\pm}^{σ} , C_{\pm}^{σ} , C_{\pm}^{\bowtie} . The fourth type of constraints C_{\pm}^{\bowtie} is taken care of by the data generation process at runtime.

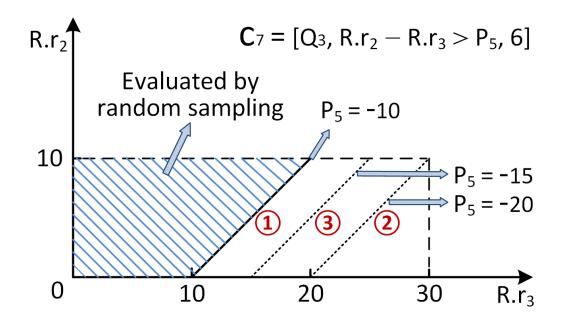
This is an iterative process!



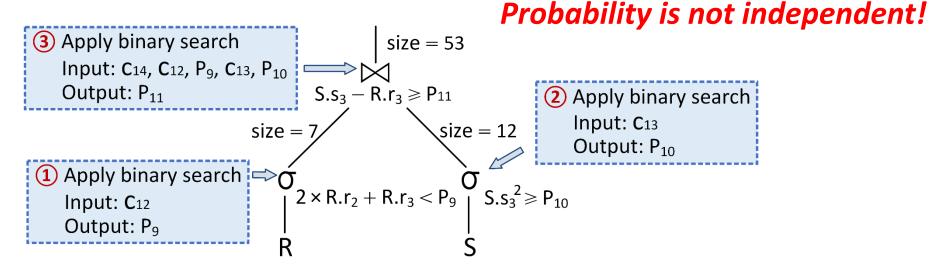
Equality Constraints over Filters

Index	Probability	CDF
1	20%	0.3
4	15%	0.65
6	15%	0.9

- (1) Randomly select an index and obtain the corresponding value for instantiating the parameter;
- (2) Update the occurrence probability of the selected index in the column generator;
- (3) Calculate the cumulative probabilities in the probability table.


D of T.t₃: 20%, 8, (20, 100)
Value = NULL or (Index + Seeds[Index mod 3])
Seeds: {ranStr₁, ranStr₂, ranStr₃}

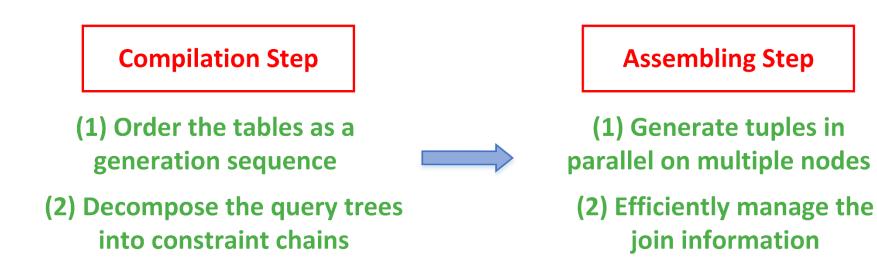
Non-Equality Constraints over Filters


- Run a **binary search** over the parameter domain to find the optimal concrete parameter based on the fixed column data distribution.
- Using the random sampling algorithm to evaluate the probability of tuples satisfying the instantiated predicate.

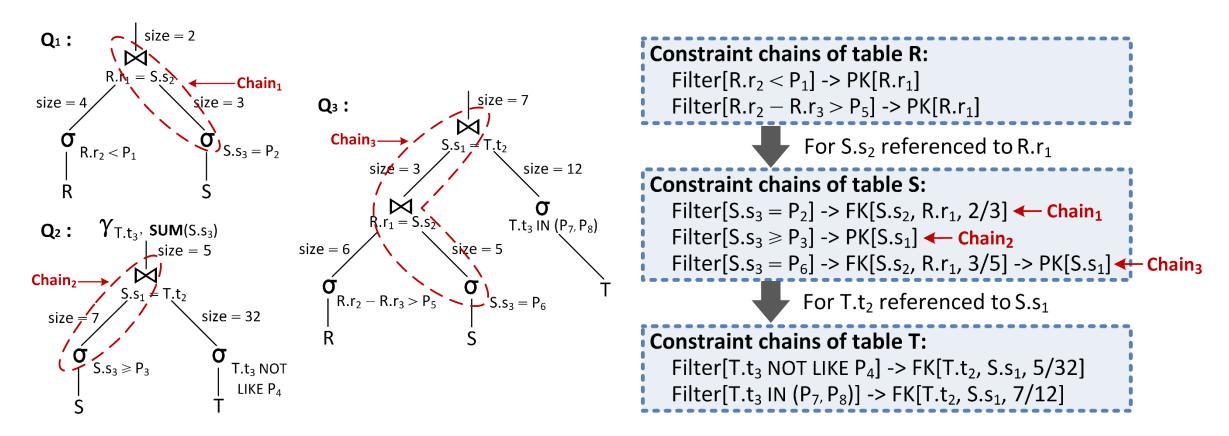
Parameter searching procedure

Non-Equality Constraints over Joins

We must process the constraints in a **bottom-up** manner, because the columns involved in constraints C_{\neq}^{\bowtie} may overlap with the columns in the child nodes.

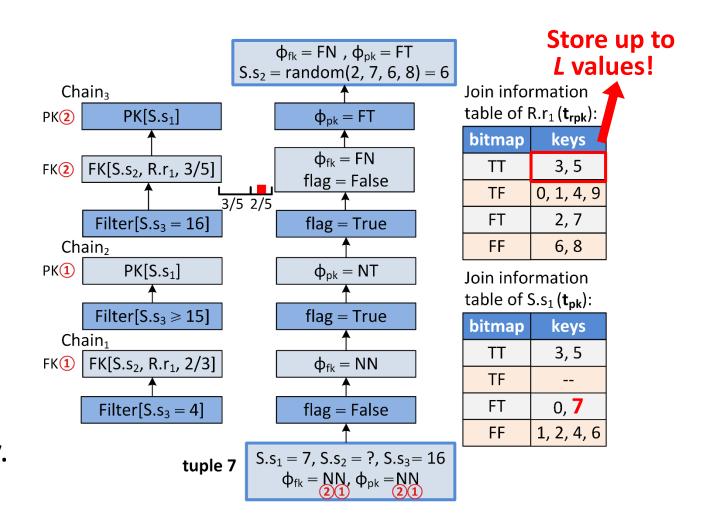


The processing strategy for each constraint in C_{\neq}^{\bowtie} is the same as the constraint in C_{\neq}^{σ} (binary search & random sampling).


Data Generation

The data generation component is responsible for assembling tuples based on the outputs of the column generators.

■ The key technical challenge here is to meet the equality constraints over the join operators, i.e., C[⋈]₌, which involve the dependencies among primary and foreign keys from multiple tables.


Compilation Step

Focus on the manipulation of primary key and foreign keys.

Assembling Step

- (1) Incrementally assign a primary key;
- (2) Fill values in the non-key columns by calling the random column generators;
- (3) Identify the appropriate candidate referenced keys for each foreign key;
- (4) Maintain the join information of the primary key.

Handling Mismatch Cases

- There are some joinability statuses of the primary key that never occur!
- Therefore, in the tuple generation, it should be avoided to search such referenced primary key.
- The main idea is to add rules to manipulate relevant FK constraints.

Join information table of rpk:

bitma	o keys	
FFF	1, 5	0
TFF	6, 7	
FFT	2, 9	
TTF	3, 8	
321		

The example constraint chains of the target table:

ар	keys	Filter[] -> FK[fk,rpk,0.3]
П	1, 5	No adjustment
F	6, 7	Filter[] -> FK[fk,rpk,0.6] -> PK[]
Г	2, 9	FK[fk,rpk,0.65,rules:[FT <- T]]
F	3, 8	<pre>General States and the second states and the second states are second states and the second states are second state</pre>
1		FK[fk,rpk,0.17,rules:[FFT <- FT,TTF <- TF]]

An example of adjustments to FK constraints