
Cavs: An Efficient Runtime System for 
Dynamic Neural Networks

Hao Zhang*

Shizhen Xu*, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng
Qirong Ho, Guangwen Yang, Eric P. Xing

Carnegie Mellon University and Petuum Inc.
* indicates equal contributions



Outline

• Deep learning and dataflow graphs
• Dynamic neural network and programming models
• Cavs: a new programming interface for dynamic NNs

Hao Zhang 1



• A layer in a neural network is composed of a few finer 
computational operations, which can be represented as a 
forward pass through a dataflow graph

• Training the layer parameters involves deriving the gradients of 
its parameters -- a backward pass where the gradients flow 
through a backward dataflow graph representation of the layer

• Given forward dataflow graph, the backward graph can be
automatically derived by auto-differentiation

A Computational Layer in DL

Hao Zhang 2

forward

! "

backward

#! #"



A Neural Network as a Dataflow Graph

Hao Zhang 3

• Define a neural network ~= assemble a dataflow graph
• Define operations and layers: fully-connected? Convolution? 
• Define data I/O: what data to read? Where?
• Define a loss functions: L2 loss? Softmax?
• Define an optimization solver: SGD, Momentum, Adam, etc.
• Connect operations, data I/O, loss functions and optimizer as a full 

dataflow graph, which is the representation of the neural network
Auto-differentiation Libraries (e.g. Caffe, TensorFlow) then take
over

• Automatically derive the backward graphs
• Perform training (forward-backward passes) and apply updates 



A Neural Network as a Dataflow Graph

Hao Zhang 4

⋯

⋯

Photo from TensorFlow websi

forward

backward



A Programming Model: Static Declaration

• Users declare a dataflow graph
• Frameworks analyze and optimize the graph

• Automatically derive the backward graph based on autodiff
• Incorporate some graph-level optimization if desired

• Perform training/inference iteratively

Hao Zhang 5

Incorporate graph-level 
optimization over ! (optionally)



Static Declaration: Advantages

• Static Declaration is the dominant choice for DL
• Good for static workflows: define once, run for arbitrary batches/data
• All samples compute over one graph, therefore the computation can 

be “by-nature” batched – by leveraging GPU and other advanced 
matrix-computing libs (CUDA, etc.)

• Easy to optimize: a lot of off-the-shelf optimization techniques for
dataflow graph

Hao Zhang 6

Incorporate graph-level 
optimization over ! (optionally)

Batched computation here



Introduction to Dynamic Neural Networks

• Deep Learning has been applied on more structured data
• The neural network computes following a data-dependent 

structure, in order to encode the structure information
• Hence, The NN architecture used to handle structured data would 

change with the input sample
• E.g. Recurrent Neural Networks and their variants

• Sequence RNN in machine translation, video understanding
• Tree RNN in sentence parsing and sentiment analysis
• GraphRNN in social network/image segmentation

Hao Zhang 7



Dynamic Neural Network: An Example

• An example of a dynamic NN
• (a) a constituency parsing tree
• (b) the corresponding Tree-LSTM network. 
• We use the following abbreviations in (a): S for sentence, N for noun, 

VP for verb phrase, NP for noun phrase, D for determiner, and V for 
verb.

Hao Zhang 8



Static Declaration for Dynamic Dataflow Graphs

• Can we handle dynamic dataflow graphs using static
declaration?

• Static unroll: preprocessing all inputs to have the same length
• Bucketing: put inputs into different buckets, one bucket one NN
• At the core of the above tricks is to pad the inputs with zeros so they

have the same shape/length
• They are very commonly adopted, but are they good?

• Unable to express structures beyond sequences
• Usually result in unnecessary (extra) computation, which wastes 

computational resources
• Complexity in implementation

Hao Zhang 9



An Extended Model: Dynamic Declaration

• Key idea: declare and construct a dataflow graph for each
input sample

• Move the graph declaration and construction (and optimization) from 
outside of the loop to inside the loop

• Perform single instance training because it is hard to batch

• DL Frameworks based on dynamic declaration have gained
substantial popularity in the most recent 2 years

Hao Zhang 10



Dynamic Declaration: Pros and Cons

• Dynamic declaration has one major advantage
• Flexibility: it can express arbitrarily dynamically networks structures by 

declaring as many as dataflow graphs as the number of training data
• Dynamic declaration scarifies efficiency for flexibility

Hao Zhang 11



• Graph construction overhead grows linearly with # of samples

Problem #1: Graph Construction Cost

Hao Zhang 12



Problem #1: Graph Construction Cost

Hao Zhang 13

• Curve (left axis): absolute time; bar (right): percentage time
• Graph construction takes 80% of overall time in TensorFlow Fold



Problem #2: Batching will be Difficult

Hao Zhang 14

In static declaration: 
batching is natural

In dynamic declaration: 
batching is difficult

• No batching available any more
• Manual batching the execution of differently structured graphs

is very difficult
• Users have to write code to do batching by themselves
• In fact, until 2017, most papers based on tree-LSTM (a typical 

dynamic NN) model is trained with batchsize=1



Problem #3: Unavailable to Graph 
Optimizations

Hao Zhang 15

Graph optimization 
happens here: 
inside the loops!

• In static declaration, we optimize the graph only once,
• Graph optimization overhead is constant
• The optimization is beneficial for all input data points

• In dynamic declaration, if we want to incorporate these
optimization, we need to optimize for each declared graph

• Linear graph optimization overhead
• As a result: the optimization might cost more than it can gain

Graph optimization 
happens here: 
outside of the loop



Introducing Cavs: Design Goals

• Simple Interface, rich expressiveness
• Keep the flexibility of dataflow graph and dynamic declaration

• At the same time, address the three aforementioned problems:
• Minimize graph construction overhead
• Allow for efficient computation and batching
• (Re-)open the opportunities for graph optimization techniques

Hao Zhang 16



Cavs: Motivation

• Observation: Most dynamic NNs have recurrent/recursive
structures

• The dynamics come from the sample-dependent structure
instead of the ”neural network” model itself

Hao Zhang 17



Cavs: A New Representation

• Cavs introduces a novel representation for dynamic NNs, and
decompose a dynamic NN as two modules

• A vertex function F, which is static;
• An input graph G, which is data-dependent and dynamic;

• Hence, Cavs separates out static ML model from the data-
dependent dynamics which come from input samples

Hao Zhang 18

Dynamics come
from here Static computation pattern

specified here



Cavs: A Vertex-centric Representation

• Programming: think like a vertex
• User implements a vertex function F, specifying how a node will 

interact with its neighboring nodes
• The system read input graph G through I/O
• The system will compile the local vertex function and figure out the 

overall computing pattern of the NN over the whole graph

Hao Zhang 19

Input graphs:
obtained through
I/O

Computational dataflow
graph: statically declared
by programmer



Cavs: Four APIs

• Gather & Scatter for internal data path
• Pull & Push for external data path

Hao Zhang 20



Cavs: Four APIs

• An example: expressing Tree-LSTM using the four APIs

Hao Zhang 21



Expressing Backpropagation

• The forward and backward passes in Cavs
• Forward: schedule the execution of the vertex function F through a
batch of input graphs following the dependencies therein (e.g. from
leaves to roots in trees)

• Backward: schedule the execution of !" through the same batch of
input graphs, in a reverse order (e.g. from roots to trees)

Hao Zhang 22



Cavs Bypasses Graph Construction
Overhead

Hao Zhang 23

Declare only once à
constant graph 
construction cost

Read through I/O, no 
graph construction 
involved any more.

• No repeated graph construction overhead!
• The graph construction overhead is constant – we only need to

construct F, which is usually a small-scale dataflow graph
• Bypass the repeated dataflow graph construction
• Instead, read the input graph G, which could be achieved by an I/O 

function



Empirical Results: Graph Construction Cost

Hao Zhang 24

• Cavs has constant graph construction overhead
• Curve (left axis): absolute time; bar (right): percentage time
• In terms of graph construction overhead, Cavs outperforms 

TensorFlow-Fold and DyNet by a large margin



Cavs Enables Batched Computation

• Recall the Dynamic Declaration problem #2
• Batched computation on dynamic graphs are difficult

• Difficult to find batching opportunities
• Only same operations with exactly the same size of inputs/outputs can be

batched
• Need either manual batching or heavy graph analysis (NP-hard)

• Strict requirements on memory layouts
• For the batched computation to be efficient, their input/output need to coalesce

on memory
• How to efficiently re-arrange memory layout to guarantee continuity?

Hao Zhang 25



Cavs Enables Batched Computation

• Batched computation is natural and automatic in Cavs
• Cavs transforms the backpropagation as evaluating F at a batch of

input graphs
• Then, batched computation can be realized by a simple policy

• Figure out a set of vertices that we are ready to evaluate F on
• Batch the evaluation of F on this set of vertices
• Pass the output of F to their parent vertices

• See the figure below
• Vertices with same colors are batched evaluated.

Hao Zhang 26Tree 1 Tree 2



Dynamic Batching: Memory Management
Challenge

• Batched computational kernels on CPU/CPUs requires the 
inputs to a batched computation kernel locate continuously on 
memory

• e.g. gemm kernels
• In Dynamic Declaration, this is usually not the case due to the 

dynamic-varying input structures.
• To achieve memory continuity, one has to frequently re-arrange

memory layouts (memcpy) of the inputs to each batched operation.
• Cavs proposes a new data structure, DynamicTensor, to 

ensure memory continuity, at the same time minimize memory
movement overhead

Hao Zhang 27



Cavs: Advanced Memory Management –
Dynamic Tensor

• With dynamic tensors, Cavs designs a memory management
mechanism to guarantee the coalesce of input contents of
batched operations on memory

Hao Zhang 28



Cavs: Improvement on Memory Management

Hao Zhang

29

• The improvement is significant (2x - 3x) at larger batch size, c 
comparing to DyNet (a state-of-the-art framework for dynamic
NNs).



Cavs is Open to Graph Optimization

• Incorporating graph-level optimization in Cavs is the same as it
in static declaration

• Optimize the static vertex function F
• F will be evaluated at each vertex of the input structure
• Optimize once, benefit elsewhere

Hao Zhang 30

Graph optimization 
happens here: 
outside of the loops



Cavs Exposes Opportunities for Graph
Optimization

• Cavs proposes/adopts three graph-level optimization 
strategies

• Lazy batching
• Streaming
• Automatic kernel fusion

Hao Zhang 31



How Important is Graph Optimization?

Hao Zhang 32

• In static frameworks with static declaration, graph optimization
usually yield 2 – 4x speedups depending on the graph size.

• E.g. TensorFlow XLA, MxNet TVM, etc.
• In Cavs, we observe another 1.5x speedup with graph

optimizations



Overall Performance

Hao Zhang 33

• Overall, Cavs is 1 – 2 orders of magnitude faster than state-of-
the-art systems such as DyNet and TensorFlow-Fold on
different dynamic NNs.



Cavs: Improvement on Computation

Hao Zhang 34

• When only comparing computation, Cavs shows maximally 
5.4x/9.7x and 7.2x/2.4x speedups over Fold/DyNet on Tree-FC 
and Tree-LSTM, respectively.

• Setting: Tree-FC network, time/epoch (s) with varying number
of tree leaves and batchsize



Overview: Frameworks for Dynamic NNs

Hao Zhang 35



Take-home Messages

Hao Zhang 36

• Deep learning has moved from static architectures (CNNs)
more and more to dynamic structures

• Static declaration and dynamic declaration are two mostly
adopted programming models, but they both have drawbacks

• Graph construction overhead
• Difficulty in dynamic batching (most important!)
• Unavailable to graph optimizations

• Cavs proposes a representation of dynamic NNs that
addresses these challenges

• Dynamic neural networks is an interesting field that demands 
more system research, e.g. new programming models, 
parallelization strategies, and software frameworks



More and Thanks!

Hao Zhang 37

• More technical details and results in paper.
• Code will be released soon, check out at 

https://github.com/petuum-inc

Thanks!
Q&A

https://github.com/petuum-inc

