

Cavs: An Efficient Runtime System for **Dynamic Neural Networks**

Hao Zhang*

Shizhen Xu*, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng Qirong Ho, Guangwen Yang, Eric P. Xing Carnegie Mellon University and Petuum Inc. * indicates equal contributions

Outline

- Deep learning and dataflow graphs
- Dynamic neural network and programming models
- Cavs: a new programming interface for dynamic NNs

A Computational Layer in DL

- A layer in a neural network is composed of a few finer computational operations, which can be represented as a forward pass through a dataflow graph
- Training the layer parameters involves deriving the gradients of its parameters -- a backward pass where the gradients flow through a backward dataflow graph representation of the layer
- Given forward dataflow graph, the backward graph can be automatically derived by auto-differentiation

A Neural Network as a Dataflow Graph

• Define a neural network ~= assemble a dataflow graph

- Define operations and layers: fully-connected? Convolution?
- Define data I/O: what data to read? Where?
- Define a loss functions: L2 loss? Softmax?
- Define an optimization solver: SGD, Momentum, Adam, etc.
- Connect operations, data I/O, loss functions and optimizer as a full dataflow graph, which is the representation of the neural network

Auto-differentiation Libraries (e.g. Caffe, TensorFlow) then take over

- Automatically derive the backward graphs
- Perform training (forward-backward passes) and apply updates

A Neural Network as a Dataflow Graph

A Programming Model: Static Declaration

- Users declare a dataflow graph
- Frameworks analyze and optimize the graph
 - Automatically derive the backward graph based on autodiff
 - Incorporate some graph-level optimization if desired
- Perform training/inference iteratively

Incorporate graph-level optimization over *D* (optionally)

/* (a) static declaration */ // all samples must share one graph declare a static data flow graph \mathcal{D} . for $t = 1 \rightarrow T$: read the *t*th data batch $\{x_i^t\}_{i=1}^K$. batched computation: $\mathcal{D}(\{x_i^t\}_{i=1}^K)$.

Static Declaration: Advantages

- Static Declaration is the dominant choice for DL
 - Good for static workflows: define once, run for arbitrary batches/data
 - All samples compute over one graph, therefore the computation can be "*by-nature" batched* – by leveraging GPU and other advanced matrix-computing libs (CUDA, etc.)
 - Easy to optimize: a lot of off-the-shelf optimization techniques for dataflow graph

Introduction to Dynamic Neural Networks

- Deep Learning has been applied on more structured data
- The neural network computes following a data-dependent structure, in order to encode the structure information
 - Hence, The NN architecture used to handle structured data would change with the input sample
- E.g. Recurrent Neural Networks and their variants
 - Sequence RNN in machine translation, video understanding
 - Tree RNN in sentence parsing and sentiment analysis
 - GraphRNN in social network/image segmentation

Dynamic Neural Network: An Example

- An example of a dynamic NN
 - (a) a constituency parsing tree
 - (b) the corresponding Tree-LSTM network.
 - We use the following abbreviations in (a): S for sentence, N for noun, VP for verb phrase, NP for noun phrase, D for determiner, and V for verb.

Static Declaration for Dynamic Dataflow Graphs

- Can we handle **dynamic** dataflow graphs using **static** declaration?
 - Static unroll: preprocessing all inputs to have the same length
 - Bucketing: put inputs into different buckets, one bucket one NN
 - At the core of the above tricks is to pad the inputs with zeros so they have the same shape/length
- They are <u>very commonly adopted</u>, but are they good?
 - Unable to express structures beyond sequences
 - Usually result in unnecessary (extra) computation, which wastes computational resources
 - Complexity in implementation

An Extended Model: Dynamic Declaration

- Key idea: declare and construct a dataflow graph for each input sample
 - Move the graph declaration and construction (and optimization) from outside of the loop to inside the loop
 - Perform single instance training because it is hard to batch

```
/* (a) static declaration *//*// all samples must share one graphfodeclare a static data flow graph \mathcal{D}.fofor t = 1 \rightarrow T:read the tth data batch \{x_i^t\}_{i=1}^K.batched computation:\mathcal{D}(\{x_i^t\}_{i=1}^K).
```

/* (b) dynamic declaration */
for
$$t = 1 \rightarrow T$$
:
read the *t*th data batch $\{x_i^t\}_{i=1}^K$.
for $k = 1 \rightarrow K$:
declare a data flow graph \mathcal{D}_i^t for x_i^t .
single-instance computation: $\mathcal{D}_i^t(x_i^t)$

 DL Frameworks based on dynamic declaration have gained substantial popularity in the most recent 2 years

Dynamic Declaration: Pros and Cons

- Dynamic declaration has one major advantage
 - Flexibility: it can express <u>arbitrarily dynamically</u> networks structures by declaring as many as dataflow graphs as the number of training data
- Dynamic declaration scarifies efficiency for flexibility

/* (b) dynamic declaration */ for $t = 1 \rightarrow T$: read the *t*th data batch $\{x_i^t\}_{i=1}^K$. for $k = 1 \rightarrow K$: declare a data flow graph \mathcal{D}_i^t for x_i^t . single-instance computation: $\mathcal{D}_i^t(x_i^t)$.

Problem #1: Graph Construction Cost

• Graph construction overhead grows linearly with # of samples

/* (a) static declaration */ // all samples must share one graph declare a static data flow graph \mathcal{D} . for $t = 1 \rightarrow T$: read the *t*th data batch $\{x_i^t\}_{i=1}^K$. batched computation: $\mathcal{D}(\{x_i^t\}_{i=1}^K)$.

```
/* (b) dvnamic declaration */

for t = 1 \rightarrow T:

read the tth data batch \{x_i^t\}_{i=1}^K.

for k = 1 \rightarrow K:

declare a data flow graph \mathcal{D}_i^t for x_i^t.

single-instance computation: \mathcal{D}_i^t(x_i^t).
```

Problem #1: Graph Construction Cost

- Curve (left axis): absolute time; bar (right): percentage time
- Graph construction takes 80% of overall time in TensorFlow Fold

Problem #2: Batching will be Difficult

- No batching available any more
- Manual batching the execution of differently structured graphs is very difficult
 - Users have to write code to do batching by themselves
 - In fact, until 2017, most papers based on tree-LSTM (a typical dynamic NN) model is trained with batchsize=1

Problem #3: Unavailable to Graph Optimizations

- In static declaration, we optimize the graph only once,
 - Graph optimization overhead is constant
 - The optimization is beneficial for all input data points
- In dynamic declaration, if we want to incorporate these optimization, we need to optimize for each declared graph
 - Linear graph optimization overhead
- As a result: the optimization might cost more than it can gain

Introducing Cavs: Design Goals

- Simple Interface, rich expressiveness
 - Keep the flexibility of dataflow graph and dynamic declaration
- At the same time, address the three aforementioned problems:
 - Minimize graph construction overhead
 - Allow for efficient computation and batching
 - (Re-)open the opportunities for graph optimization techniques

Cavs: Motivation

- Observation: Most dynamic NNs have recurrent/recursive structures
- The dynamics come from the sample-dependent structure instead of the "neural network" model itself

Cavs: A New Representation

- Cave introduces a novel representation for dynamic NNs, and decompose a dynamic NN as two modules
 - A vertex function F, which is static;
 - An input graph G, which is data-dependent and dynamic;
- Hence, Cavs separates out static ML model from the datadependent dynamics which come from input samples

Cavs: A Vertex-centric Representation

• Programming: think like a vertex

- User implements a vertex function F, specifying how a node will interact with its neighboring nodes
- The system read input graph G through I/O
- The system will compile the local vertex function and figure out the overall computing pattern of the NN over the whole graph

Cavs: Four APIs

- Gather & Scatter for internal data path
- Pull & Push for external data path

Cavs: Four APIs

• An example: expressing Tree-LSTM using the four APIs

```
def \mathcal{F}():
   S = gather()
                                           # gather states of child vertices
  for k in range(N):
     c_k, h_k = split(S[k], 2) # get hidden states c and h
  x = pull(\{0\})
                                         # pull the first external input x
  # specify the computation
  \mathbf{h} = \sum_{k=0}^{N-1} \mathbf{h}_k
  i = \text{sigmoid}(W^{(i)} \times x + U^{(i)} \times h + b^{(i)})
  for k in range(N):
     \mathbf{f}_k = \operatorname{sigmoid}(\mathbf{W}^{(f)} \times \mathbf{x} + \mathbf{U}^{(f)} \times \mathbf{h}_k + \mathbf{b}^{(f)})
  o = sigmoid(W^{(o)} \times x + U^{(o)} \times h + b^{(o)})
  u = tanh(W^{(u)} \times x + U^{(u)} \times h + b^{(u)})
  \mathsf{c} = i \otimes u + \sum_{k=0}^{N-1} \mathsf{f}_k \otimes \mathsf{c}_k
  h = o \otimes tanh(c)
  scatter(concat([c, h], 1)) # scatter c, h to parent vertices
                                             # push to external connectors
  push(h)
```

Expressing Backpropagation

- The forward and backward passes in Cavs
 - Forward: schedule the execution of the vertex function F through a batch of input graphs following the dependencies therein (e.g. from leaves to roots in trees)
 - Backward: schedule the execution of ∂F through the same batch of input graphs, in a reverse order (e.g. from roots to trees)

Cavs Bypasses Graph Construction Overhead

- No repeated graph construction overhead!
 - The graph construction overhead is constant we only need to construct F, which is usually a small-scale dataflow graph
 - Bypass the repeated dataflow graph construction
 - Instead, read the input graph G, which could be achieved by an I/O function

	/* (c) our proposed vertex-centric model */	
Declare only once → constant graph construction cost	declare a symbolic vertex function \mathcal{F} .	
	for $t = 1 \rightarrow T$:	Deed through 1/0, pa
	read the tth data batch $\{x_i^t\}_{i=1}^K$.	Read through I/O, no graph construction
	read their associated graphs $\{\mathcal{G}_i^t\}_{i=1}^K$	involved any more.
	compute \mathcal{F} over $\{\mathcal{G}_i^t\}_{i=1}^K$ with inputs $\{x_i^t\}_{i=1}^K$.	

Empirical Results: Graph Construction Cost

- Cavs has constant graph construction overhead
- Curve (left axis): absolute time; bar (right): percentage time
- In terms of graph construction overhead, Cavs outperforms TensorFlow-Fold and DyNet by a large margin

Cavs Enables Batched Computation

- Recall the Dynamic Declaration problem #2
- Batched computation on dynamic graphs are difficult
 - Difficult to find batching opportunities
 - Only same operations with exactly the same size of inputs/outputs can be batched
 - Need either manual batching or heavy graph analysis (NP-hard)
 - Strict requirements on memory layouts
 - For the batched computation to be efficient, their input/output need to coalesce on memory
 - How to efficiently re-arrange memory layout to guarantee continuity?

Cavs Enables Batched Computation

- Batched computation is natural and automatic in Cavs
 - Cave transforms the backpropagation as <u>evaluating F at a batch of</u> <u>input graphs</u>
- Then, batched computation can be realized by a simple policy
 - Figure out a set of vertices that we are ready to evaluate F on
 - Batch the evaluation of F on this set of vertices
 - Pass the output of F to their parent vertices
- See the figure below
 - Vertices with same colors are batched evaluated.

Dynamic Batching: Memory Management Challenge

- Batched computational kernels on CPU/CPUs requires the inputs to a batched computation kernel locate continuously on memory
 - e.g. gemm kernels
 - In Dynamic Declaration, this is usually not the case due to the dynamic-varying input structures.
 - To achieve memory continuity, one has to frequently re-arrange memory layouts (memcpy) of the inputs to each batched operation.
- Cavs proposes a new data structure, DynamicTensor, to ensure memory continuity, at the same time minimize memory movement overhead

```
struct DynamicTensor {
  vector<int> shape;
  int bs;
  int offset;
  void* p; };
```

Cavs: Advanced Memory Management – Dynamic Tensor

• With dynamic tensors, Cavs designs a memory management mechanism to guarantee the coalesce of input contents of batched operations on memory

Cavs: Improvement on Memory Management

 The improvement is significant (2x - 3x) at larger batch size, c comparing to DyNet (a state-of-the-art framework for dynamic NNs).

7	Memory operations		Computation (s)	
bs	(s) (Cavs / DyNet)		(Cavs / DyNet)	
	Train	Inference	Train	Inference
16	1.14 / 1.33	0.6 / 1.33	9.8 / 12	2.9 / 8.53
32	0.67 / 0.87	0.35 / 0.87	6.1 / 9.8	1.9 / 5.35
64	0.39 / 0.6	0.21 / 0.6	4.0 / 7.4	1.3 / 3.48
128	0.25 / 0.44	0.13 / 0.44	2.9 / 5.9	0.97 / 2.52
256	0.17 / 0.44	0.09 / 0.44	2.3 / 5.4	0.77 / 2.58

Hao Zhang

Cavs is Open to Graph Optimization

- Incorporating graph-level optimization in Cavs is the same as it in static declaration
 - Optimize the static vertex function F
 - F will be evaluated at each vertex of the input structure
 - Optimize once, benefit elsewhere

Graph optimization happens here: outside of the loops

/* (c) our proposed vertex-centric model */ declare a symbolic vertex function \mathcal{F} . for $t = 1 \rightarrow T$: read the *t*th data batch $\{x_i^t\}_{i=1}^K$. read their associated graphs $\{\mathcal{G}_i^t\}_{i=1}^K$. compute \mathcal{F} over $\{\mathcal{G}_i^t\}_{i=1}^K$ with inputs $\{x_i^t\}_{i=1}^K$.

Cavs Exposes Opportunities for Graph Optimization

- Cavs proposes/adopts three graph-level optimization strategies
 - Lazy batching
 - Streaming
 - Automatic kernel fusion

How Important is Graph Optimization?

- In static frameworks with static declaration, graph optimization usually yield 2 4x speedups depending on the graph size.
 E.g. TensorFlow XLA, MxNet TVM, etc.
- In Cavs, we observe another 1.5x speedup with graph optimizations

Overall Performance

 Overall, Cavs is 1 – 2 orders of magnitude faster than state-ofthe-art systems such as DyNet and TensorFlow-Fold on different dynamic NNs.

Cavs: Improvement on Computation

- When only comparing computation, Cavs shows maximally 5.4x/9.7x and 7.2x/2.4x speedups over Fold/DyNet on Tree-FC and Tree-LSTM, respectively.
- Setting: Tree-FC network, time/epoch (s) with varying number of tree leaves and batchsize

# leaves	time (s)	Speedup	bs	time (s)	Speedup
32	0.6 / 3.1 / 4.1	5.4 / 7.1	1	76 / 550 / 62	7.2 / 0.8
64	1.1 / 3.9 / 8.0	3.7 / 7.5	16	9.8 / 69 / 12	7.0 / 1.2
128	2 / 6.2 / 16	3.0 / 7.9	32	6.2 / 43 / 9.9	7.0/1.6
256	4 / 10.6 / 33.7	2.7 / 8.7	64	4.1 / 29 / 7.4	7.2 / 1.8
512	8 / 18.5 / 70.6	2.3 / 8.9	128	2.9 / 20.5 / 5.9	7.1 / 2.0
1024	16 / 32 / 153	2.1 / 9.7	256	2.3 / 15.8 / 5.4	7.0 / 2.4

Overview: Frameworks for Dynamic NNs

Model	Frameworks	Expressiveness	Batching	Graph Cons. Overhead	Graph Exec. Optimization
static declaration	Caffe, Theano, TensorFlow, MxNet	×	×	low	beneficial
dynamic declaration (instant evaluation)	PyTorch, Chainer	\checkmark	×	N/A	unavailable
dynamic declaration (lazy evaluation)	DyNet	\checkmark	\checkmark	high	not beneficial
Fold	TensorFlow-Fold	\checkmark	\checkmark	high	unknown
Vertex-centric	Cavs	\checkmark	\checkmark	low	beneficial

Take-home Messages

- Deep learning has moved from static architectures (CNNs) more and more to dynamic structures
- Static declaration and dynamic declaration are two mostly adopted programming models, but they both have drawbacks
 - Graph construction overhead
 - Difficulty in dynamic batching (most important!)
 - Unavailable to graph optimizations
- Cavs proposes a representation of dynamic NNs that addresses these challenges
- Dynamic neural networks is an interesting field that demands more system research, e.g. new programming models, parallelization strategies, and software frameworks

More and Thanks!

- More technical details and results in paper.
- Code will be released soon, check out at https://github.com/petuum-inc

Thanks! Q&A