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* Deep learning and dataflow graphs
* Dynamic neural network and programming models
e Cavs: a new programming interface for dynamic NNs
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A Computational Layer in DL

A layer in a neural network is composed of a few finer
computational operations, which can be represented as a
forward pass through a dataflow graph

* Training the layer parameters involves deriving the gradients of
its parameters -- a backward pass where the gradients flow
through a backward dataflow graph representation of the layer

« Given forward dataflow graph, the backward graph can be
automatically derived by auto-differentiation
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A Neural Network as a Dataflow Graph

 Define a neural network ~= assemble a dataflow graph
» Define operations and layers: fully-connected? Convolution?
» Define data I/O: what data to read? Where?
» Define a loss functions: L2 loss? Softmax?
» Define an optimization solver: SGD, Momentum, Adam, etc.

« Connect operations, data |/O, loss functions and optimizer as a full
dataflow graph, which is the representation of the neural network

Auto-differentiation Libraries (e.g. Caffe, TensorFlow) then take
over

« Automatically derive the backward graphs
« Perform training (forward-backward passes) and apply updates

Hao Zhang
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A Neural Network as a Dataflow Graph
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A Programming Model: Static Declaration

» Users declare a dataflow graph

» Frameworks analyze and optimize the graph
« Automatically derive the backward graph based on autodiff
* Incorporate some graph-level optimization if desired

« Perform training/inference iteratively

Incorporate graph-level
optimization over D (optionally)

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1—1T:
read the tth data batch {z¢}X .
batched computation: D({z!} % ).
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Static Declaration: Advantages

 Static Declaration is the dominant choice for DL
» (Good for static workflows: define once, run for arbitrary batches/data

« All samples compute over one graph, therefore the computation can
be “by-nature” batched - by leveraging GPU and other advanced
matrix-computing libs (CUDA, etc.)

« Easy to optimize: a lot of off-the-shelf optimization techniques for
dataflow graph

Incorporate graph-level
optimization over D (optionally)

/* (a) static declaration */

// all samples must share one graph T“’”

declare a static data flow graph D. theano & caffer

fort=1—1T: Caffe  dmic
read the tth data batch {z!}X . = munet

F A tV K
batched Compmatlon- D({xz 7;:1)- |— Batched computation here
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Introduction to Dynamic Neural Networks

* Deep Learning has been applied on more structured data

» The neural network computes following a data-dependent
structure, in order to encode the structure information

« Hence, The NN architecture used to handle structured data would
change with the input sample

* £.g. Recurrent Neural Networks and their variants
» Sequence RNN in machine translation, video understanding
* Tree RNN in sentence parsing and sentiment analysis
« GraphRNN in social network/image segmentation
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Dynamic Neural Network: An Example

* An example of a dynamic NN
* (a) a constituency parsing tree
* (b) the corresponding Tree-LSTM network.

« We use the following abbreviations in (a): S for sentence, N for noun,

VP for verb phrase, NP for noun phrase, D for determiner, and V for

verb.
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Static Declaration for Dynamic Dataflow Graphs

« Can we handle dynamic dataflow graphs using static
declaration?
« Static unroll: preprocessing all inputs to have the same length
« Bucketing: put inputs into different buckets, one bucket one NN

» At the core of the above tricks is to pad the inputs with zeros so they
have the same shape/length

* They are very commonly adopted, but are they good?

» Unable to express structures beyond sequences

« Usually result in unnecessary (extra) computation, which wastes
computational resources

« Complexity in implementation

Hao Zhang
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An Extended Model: Dynamic Declaration

« Key idea: declare and construct a dataflow graph for each
iInput sample

« Move the graph declaration and construction (and optimization) from
outside of the loop to inside the loop

» Perform single instance training because it is hard to batch

/* (a) static declaration */ /* (b) dynamic declaration */
// all samples must share one graph fort=1—-1T:
|dec|are a static data flow graph D.l read the tth data batch {z!} X .
fort=1—"1" fork=1— K:
read the tth data batch {2 [declare a data flow graph D? for &
batched computation: single-instance computation{D? (z?)|

« DL Frameworks based on dynamic declaration have gained
substantial popularity in the most recent 2 years

DyNet PYTHRCH i

Chainer
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Dynamic Declaration: Pros and Cons

» Dynamic declaration has one major advantage

 Flexibility: it can express arbitrarily dynamically networks structures by
declaring as many as dataflow graphs as the number of training data

» Dynamic declaration scarifies efficiency for flexibility

/* (b) dynamic declaration */
fort=1—-1T:
read the ¢th data batch {zt} % .
fork=1— K:
declare a data flow graph D! for «¢.
single-instance computation: D! ().
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Problem #1: Graph Construction Cost

« Graph construction overhead grows linearly with # of samples

/* (a) static declaration */
// all samples must share one graph
declare a static data flow graph D.
fort=1—>1T:
read the tth data batch {z}X .
batched computation: D({z!}£ ).

[ (b) dynamic declaration */
fort=1— T
read the ¢th data batch {zf} X .
|for E=1— K: |
declare a data flow graph D! for «t.
single-instance computation: D! (x?).

Hao Zhang 12



Problem #1: Graph Construction Cost

» Curve (left axis): absolute time; bar (right): percentage time
» Graph construction takes 80% of overall time in TensorFlow Fold
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Problem #2: Batching will be Difficult

* No batching available any more

« Manual batching the execution of differently structured graphs
Is very difficult
» Users have to write code to do batching by themselves

* |n fact, until 2017, most papers based on tree-LSTM (a typical
dynamic NN) model is trained with batchsize=1

/* (a) static declaration */

// all samples must share one graph In static declaration:
declare a static data flow graph D. batching is natural
fort=1—1T-:

read the tth data batch {zt1X .

batched computatior): D({z; }.* ;).

/* (b) dynamic declaration */

fort=1-T: K In dynamic declaration:
read the tth data batch {z}}:% ;. batching is difficult
fork=1— K:

declare a data flow graph D! for «¢.

single-instance computation: HaoZhang 14




Problem #3: Unavailable to Graph
Optimizations

* |n static declaration, we optimize the graph only once,
» Graph optimization overhead is constant
» The optimization is beneficial for all input data points

* In dynamic declaration, if we want to incorporate these
optimization, we need to optimize for each declared graph

 Linear graph optimization overhead
* As a result: the optimization might cost more than it can gain

Graph optimization Graph optimization
happens here: happens here:
outside of the loop inside the loops!
/* (a) static declaration */ /* (b) dynamic declaration */
// all samples must share one gragh fort=1—1T:
declare a static data flow graph D. read the tth data batch {z!} X |
fort=1—1T: fork=1— K:
read the tth data batch {z}X . declare a data flow graph D! for z.
batched computation: D({z¢}X ). single-instance computation: DI (xf).
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Introducing Cavs: Design Goals

« Simple Interface, rich expressiveness
« Keep the flexibility of dataflow graph and dynamic declaration

At the same time, address the three aforementioned problems:
« Minimize graph construction overhead
« Allow for efficient computation and batching
 (Re-)open the opportunities for graph optimization techniques
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Cavs: Motivation

« Observation: Most dynamic NNs have recurrent/recursive

structures

* The dynamics come from the sample-dependent structure
instead of the "neural network” model itself
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Cavs: A New Representation

« Cavs introduces a novel representation for dynamic NNs, and
decompose a dynamic NN as two modules

A vertex function F, which is static;
« An input graph G, which is data-dependent and dynamic;

« Hence, Cavs separates out static ML model from the data-
dependent dynamics which come from input samples
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Cavs: A Vertex-centric Representation

* Programming: think like a vertex

« User implements a vertex function F, specifying how a node will
interact with its neighboring nodes

* The system read input graph G through 1/O

* The system will compile the local vertex function and figure out the
overall computing pattern of the NN over the whole graph

Input graphs:
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Cavs: Four APlIs

« Gather & Scatter for internal data path
 Pull & Push for external data path
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Cavs: Four APIs

« An example: expressing Tree-LSTM using the four APls

def FQO:
S =|gather() | # gather states of child wvertices
for k in range(N):
Cr, hg = split(S[k], 2) # get hidden states c and h
X = # pull the first external input =

# specify the computation
h=3>~""h
T Zuk=0 "k

i = sigmoid(Wx x + U x n + b))
for k in range(N):

£, = sigmoid(W(F)x x + U x ny + b))
sigmoid(W(®)x x + U® x h + b(?)

o =

u = tanh(W® x x + U™ x n + b))
c=i®u+ 35 Jfk ® c

h = o ® tanh(c)

|scatter(cdncat([c, hl, 1)) # scatter c, h to parent wertices
pus # push to external connectors

Hao Zhang
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Expressing Backpropagation

* The forward and backward passes in Cavs

« Forward: schedule the execution of the vertex function F through a
batch of input graphs following the dependencies therein (e.g. from
leaves to roots in trees)

« Backward: schedule the execution of dF through the same batch of
input graphs, in a reverse order (e.g. from roots to trees)
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Cavs Bypasses Graph Construction
Overhead

* No repeated graph construction overhead!

* The graph construction overhead is constant — we only need to
construct F, which is usually a small-scale dataflow graph

» Bypass the repeated dataflow graph construction
* Instead, read the input graph G, which could be achieved by an 1/O

function
/* (c) our proposed vertex-centric model */
|declare a symbolic vertex function F. |
Declare only once = ori=1- T: Read through 1/O, no
constant graph read the tth data batCh LUt K . graph cons?ructio’n
construction cost read their associated graphs {gt}K: involved any more.

compute F over {G} X with inputs {z}X ..
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Empirical Results: Graph Construction Cost

« Cavs has constant graph construction overhead
« Curve (left axis): absolute time; bar (right): percentage time

* In terms of graph construction overhead, Cavs outperforms
TensorFlow-Fold and DyNet by a large margin
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Cavs Enables Batched Computation

* Recall the Dynamic Declaration problem #2

« Batched computation on dynamic graphs are difficult

« Difficult to find batching opportunities

« Only same operations with exactly the same size of inputs/outputs can be
batched

* Need either manual batching or heavy graph analysis (NP-hard)
* Strict requirements on memory layouts

 For the batched computation to be efficient, their input/output need to coalesce
on memory

» How to efficiently re-arrange memory layout to guarantee continuity?
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Cavs Enables Batched Computation

« Batched computation is natural and automatic in Cavs
« Cavs transforms the backpropagation as evaluating F at a batch of
input graphs
* Then, batched computation can be realized by a simple policy
« Figure out a set of vertices that we are ready to evaluate F on
« Batch the evaluation of F on this set of vertices
» Pass the output of F to their parent vertices

 See the figure below
* Vertices with same colors are batched evaluated.

Tree 1 Tree 2 Hao Zhang 26



Dynamic Batching: Memory Management
Challenge

« Batched computational kernels on CPU/CPUs requires the
Inputs to a batched computation kernel locate continuously on

memory
* €.g. gemm kernels
* In Dynamic Declaration, this is usually not the case due to the
dynamic-varying input structures.

« To achieve memory continuity, one has to frequently re-arrange
memory layouts (memcpy) of the inputs to each batched operation.

« Cavs proposes a new data structure, DynamicTensor, to
ensure memory continuity, at the same time minimize memory

movement overhead

struct DynamicTensor {
vector<int> shape;
int bs;
int offset;
void* p; };
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Cavs: Advanced Memory Management —
Dynamic Tensor

« With dynamic tensors, Cavs designs a memory management
mechanism to guarantee the coalesce of input contents of
batched operations on memory

to = pull()
t1 = gather (0) E> push J scatter
t2 = gather (1)

t3 = matmul (to, u)+ I_ | batching task
matmul (t1, v)+
matmul (t2, w)
scatter (0, t3)
push (t3)

push buffer
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Cavs: Improvement on Memory Management

* The improvement is significant (2x - 3x) at larger batch size, ¢
comparing to DyNet (a state-of-the-art framework for dynamic

NNSs).
Memory operations Computation (s)
bs (s) (Cavs / DyNet) (Cavs / DyNet)
Train Inference Train Inference
16 1.14/1.33 0.6/1.33 98/12 2.9/8.53
32 0.67/0.87 0.35/0.87 6.1/9.8 1.9/5.35
64 0.39/0.6 0.21/0.6 4.0/7.4 1.3/3.48
128 | 0.25/0.44 0.13/0.44 29/5.9 0.97/2.52
256 | 0.17/0.44 0.09/0.44 23/54 0.77 /2.58

Hao Zhang
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Cavs is Open to Graph Optimization

* Incorporating graph-level optimization in Cavs is the same as it
In static declaration
« Optimize the static vertex function F
* F will be evaluated at each vertex of the input structure
» Optimize once, benefit elsewhere S
Graph optimization

happens here:
outside of the loops

/* (c) our proposed vertex-centric model */
declare a symbolic vertex function F.
fort=1—1T:

read the tth data batch {zt}X ..

read their associated graphs {G{} X | .

compute F over {G!} £ with inputs {z¢} X .
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Cavs Exposes Opportunities for Graph
Optimization

« Cavs proposes/adopts three graph-level optimization
strategies
 Lazy batching
« Streaming
« Automatic kernel fusion

| T
[
linear
transformation

AR R R R R R IR NSRRI |
O ) @, M 1 ]
parameter eager operator lazy operator lazy batching stream1l stream2
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How Important is Graph Optimization?

* In static frameworks with static declaration, graph optimization
usually yield 2 — 4x speedups depending on the graph size.
* E.g. TensorFlow XLA, MxNet TVM, etc.

* In Cavs, we observe another 1.5x speedup with graph
optimizations

(a) Fixed-LSTM (bs = 64) (b) Tree-LSTM (bs = 64)
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Overall Performance

« Qverall, Cavs is 1 — 2 orders of magnitude faster than state-of-
the-art systems such as DyNet and TensorFlow-Fold on
different dynamic NNs.
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Cavs: Improvement on Computation

* When only comparing computation, Cavs shows maximally
5.4x/9.7x and 7.2x/2.4x speedups over Fold/DyNet on Tree-FC

and Tree-LSTM, respectively.

 Setting: Tree-FC network, time/epoch (s) with varying number

of tree leaves and batchsize

leitves time (s) Speedup bs time (s) Speedup
32 0.6/3.1/4.1 54/7.1 1 76 /5507 62 7.2/0.8
64 1.1/3.9/8.0 37175 16 9.8/69/12 7.0/1.2
128 2/6.2/16 3.0/79 32 6.2/43/9.9 7.0/1.6
256 4/10.6/33.7 2.718.7 64 4.1/29/7.4 7.2/1.8
512 8/18.5/70.6 2.3/8.9 128 2.9/20.5/5.9 7.1/2.0
1024 | 16/32/153 2.1/9.7 256 | 2.3/158/5.4 7.0/24
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Overview: Frameworks for Dynamic NNs

. . Graph Cons. Graph Exec.
Model Frameworks Expressiveness | Batching Overhead Optimization
. . Caffe, Theano, .
static declaration TensorFlow, MxNet X X low beneficial
dynamic declaration . .
(instant evaluation) PyTorch, Chainer Vv X N/A unavailable
dynamic declaration . .
(lazy evaluation) DyNet vV Vv high not beneficial
Fold TensorFlow-Fold V4 V4 high unknown
Vertex-centric Cavs Vv Vv | low | | beneficial |

Hao Zhang
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Take-home Messages

* Deep learning has moved from static architectures (CNNs)
more and more to dynamic structures

« Static declaration and dynamic declaration are two mostly
adopted programming models, but they both have drawbacks
« Graph construction overhead
« Difficulty in dynamic batching (most important!)
« Unavailable to graph optimizations

« Cavs proposes a representation of dynamic NNs that
addresses these challenges

« Dynamic neural networks is an interesting field that demands
more system research, e.g. new programming models,
parallelization strategies, and software frameworks
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More and Thanks!

* More technical details and results in paper.

e Code will be released soon, check out at
https://github.com/petuum-inc

Thanks!
Q&A
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