HeavyKeeper: An Accurate Algorithm
for Finding Top-k Elephant Flows
Junzhi Gong', Tong Yang', Haowei Zhang', Hao Li",
Steve Uhlig?, Shigang Chen3, Lorna Uden#, Xiaoming Li’

Peking University!, Queen Mary University of London?, University of Florida3,
Staffordshire University*

SEUN } ks -
E g)t X. J/\ % ‘?_,_Q_’)’ Queen Mary UI STAFFORDS:%

i N
PEKING UNIVERSITY University of London UNIVERSITY of UNIVERSITY S

FLORIDA

Finding Top-k Elephant Flows

Top-k Elephant Flows
]

Basic Flow Statistics

<&

Finding Top-k Elephant Flows

Finding top-k elephant flows serves as a fundamental network
management function.

Applications
Congestion Anomaly Network Capacity
Control Detection Planning

Top-k Elephant Flows
]

Flow Distribution of Real Traffic

» Highly Skewed

« The majority are mouse flows
* The minority are elephant flows
« However, elephant flows are much more important

Challenges

» High Line Rate

» Impossible to track information of
all flows

» Solution: approximate methods

Packets

» High Latency of Off-chip Memory

* Force algorithm to use on-chip
memory, like SRAM

* The size of on-chip memory is
small, e.g., several megabytes

Existing Solution |: Count-All

» A sketch to approximately record all flow sizes

Packet

» And a min-heap to maintain top-k elephant flows

» Sketches are smaller than hash tables

« But they still need to store all flows, which is not memory
efficient

Min-Heap

Existing Solution Il: Admit-All-Count-Some

» Frequent, Lossy Counting, Space-Saving, CSS
» Process all flows, but only record a small part of them

» Example: Space-Saving

Ol s - [O

Limitation of two existing solutions

> Count-All

« Spend too much memory and time on mouse flows
« With total memory size small, the accuracy cannot be high

» Admit-All-Count-Some
« Could drastically over-estimate flow sizes (Space-Saving, CSS)

« Could make the size of elephant flows inaccurate (Frequent, Lossy
Counting)

« With limited memory size, many mouse flows can be mistreated as
elephant flows.

Our Contributions

» A new data structure, named HeavyKeeper, which achieves high
accuracy and high processing speed in finding top-k elephant
flows.

» Experiments on real network traffic and synthetic datasets,
showing the high performance of HeavyKeeper

» Deploy algorithms in Open vSwitch (OVS) platform

Our Solution

» HeavyKeeper
« Strategy: count-with-exponential-decay
« Keeps only elephant flows
 Drastically reduce space wasted on mouse flows

» Exponential-weakening-decay
* Mouse flows are easily be decayed and removed
« Elephant flows can hardly be removed
« Will not admit new flows unless one flow is ready to be removed

Data Structure

w buckets

!

hy (f 3) Z

ZRNN Al - | - R
SR ialellgelalaimilElel C: counter field

Insertion

» Map: each incoming flow is mapped to one bucket for each array
by using the hash functions

» Insert: for each mapped bucket, different strategies are applied
according to different cases.

Insertion

W C+1| Case 1: 11 C=0
@ then C=C+1

hi(f3) W C+1] Case 2: 11 C>0 && FP=F3

v then C=C+1
B E-N

Case 3.1: 11 C>0 && FP # F3
with prob. = 1 — Progyce, C=C

T
g,

B | Case 3.2: 1f C>0 && FP # I3
with prob. = Pyogyces C=C-1

Case 1

» The bucket is empty, i.e., C=0
- Simply set the fingerprint to FP(f;), and set C=C+1=1

Case 2

» The bucket is not empty, i.e., C>0, and FP=F;
e Simply set C=C+1

Case 3

» The bucket is not empty, i.e., C>0, but FP # F3

« With a probability P,.44ce, decrease the counter C by 1.

« If the counter is reduced to O, we replace the original FP to the fingerprint
of the new flow F,

Query

» For incoming flow f
» Map: get d mapped buckets
» Filter: get those buckets whose fingerprint is FP(f)

» Answer: report the largest value among all filtered buckets (O if no
bucket left after filtering)

Decay Probability

>»P=p""¢
» b is a predefined constant, e.g., b = 1.08

» C is the value in the current counter field (the value to be decayed)

» The larger C is, the harder its flow size is decayed

Decay Probability

» When the original bucket stores a mouse flow, it will be easily

decayed
Decay with probability
1.08-3=0.794

)

Decay Probability

» \When the size of mouse flow is decayed to 0O, the original flow will
be replaced

* Therefore, mouse flows can hardly stay in HeavyKeeper

Decay with probability
@ 1.081=0.926

3 0 il

Decay Probability

» When the original bucket stores an elephant flow, it can be hardly
decayed

« Therefore, elephant flows can be stably stored in HeavyKeeper
* The estimated size of elephant flows will also be accurate

Decay with probability
1.08-100=4 55*104

Analysis

» With exponential-weakening decay, HeavyKeeper will tend to
store elephant flows and evict mouse flows.

» Most mouse flows are simply passers-by of HeavyKeeper.

» Elephant flows are easily stored, and their estimated flow sizes
are also accurate.

Basic Algorithm

» To find top-k elephant flows, the basic
version of our algorithm will simply use a
min-heap to maintain the top-k elephant
flows, like sketches.

HeavyKeeper

Min-Heap

Analysis

» Complexity
« Space: O(d*w).

« Experiments will show HeavyKeeper achieves high accuracy with very small memory
usage.

* Time: O(k).

« Updating the min-heap is time consuming. Even with the help of hash tables, the
insertion of the min-heap will also consume O(logk) time complexity.

Optimizations

» Using the min-heap, improving accuracy
 Too many details, skip

» Replacing the min-heap with a single list, improving speed
* Ignoring fingerprint collisions, the flow size of each flow will grow 1 by 1.
* Define a threshold T (e.g., T=1000)

« Recording the incoming flow in the list if the estimated size of the flow is
equalto T

« Time complexity O(d)

Y
fj — HeavyKeeper —— f]- List

Experimental Setup

» Datasets
« Campus network traffic
« CAIDA
* Synthetic skewed datasets, Zipf

» Implementation
e d = 2, enough for HeavyKeeper
* Fixing k and changing memory size, estimate accuracy
* Fixing memory size and changing k, estimate accuracy
« Speed evaluation

Experimental Setup

» Metrics
* Average absolute error (AAE). Absolute error is defined as |n; — 7;].
« Average relative error (ARE). Relative error is defined as ln’;_ﬁj]
J

* Precision. Among the k reported flows, how many flows are real top-k
elephant flows. 0%~100%.

Changing Memory Size

SS
LC

e CSS [1 HeavyKeeper

B CM Sketch

Memory size (KB)

1.51

Precision

<
n

ot
=

. i b LTI.

[1 HeavyKeeper

<
S
W—Z.S
2
_5/ HEE SS B CSS
Bl I C B CM Sketch
20 30 40 50 =73

.
S

10 20 30 40 50
Memory size (KB)
B SS B CSS [HeavyKeeper
BN IC B CM Sketch
10 20 30 40 50

Memory size (KB)

loglgAAE

Changing K

SS
LC

Bl CSS
BN CM Sketch

—
n

Precision

<
n

S
<

—
=

2.5
1 HeavyKeeper H H
AT . by b | |
< 1 I
5 ~25 i H L
T o, WEE SS mEE CSS [1 HeavyKeeper
BN ILC B CM Sketch
800 1000 200 400 600 800 1000
k
BN SS B CSS [1 HeavyKeeper
BN IC W CM Sketch

400

600
k

800

1000

Throughput (Mps)
2
N

S

Speed Evaluation

()
S

[a—
n

|
=

N

B SS B CM Sketch
BN 1LC [1 HeavyKeeper

—

2 3 4
Memory size (KB)

Open vSwitch Deployment

» Create a shared buffer between processes to store flow IDs.

» Modify OVS datapath to report each incoming flow ID to the
shared buffer.

» A user-space program of HeavyKeeper to process those flow IDs
from the buffer.

[Open vSwitch]FIOWID= Buffer F'OW'D{ HeavyKeeper]

Evaluation

)
o

[—
N

Throughput (Mps)
=

<

OVS

BN Throughput

HeavyKeeper CM Sketch
Algorithm

Thank youl!

