
HeavyKeeper: An Accurate Algorithm
for Finding Top-k Elephant Flows

Junzhi Gong1, Tong Yang1, Haowei Zhang1, Hao Li1,
Steve Uhlig2, Shigang Chen3, Lorna Uden4, Xiaoming Li1

Peking University1, Queen Mary University of London2, University of Florida3,
Staffordshire University4

Finding Top-k Elephant Flows

Basic Flow Statistics

Top-k Elephant Flows

Finding Top-k Elephant Flows

Top-k Elephant Flows

Applications
Congestion

Control
Anomaly
Detection

Network Capacity
Planning

Finding top-k elephant flows serves as a fundamental network
management function.

Flow Distribution of Real Traffic
ØHighly Skewed

• The majority are mouse flows
• The minority are elephant flows
• However, elephant flows are much more important

Challenges
ØHigh Line Rate

• Impossible to track information of
all flows

• Solution: approximate methods

ØHigh Latency of Off-chip Memory
• Force algorithm to use on-chip

memory, like SRAM

• The size of on-chip memory is
small, e.g., several megabytes

Packets

Existing Solution I: Count-All
ØA sketch to approximately record all flow sizes

ØAnd a min-heap to maintain top-k elephant flows

ØSketches are smaller than hash tables
• But they still need to store all flows, which is not memory

efficient

+1

+1

+1

+1

Packet

Min-Heap

Existing Solution II: Admit-All-Count-Some

ØFrequent, Lossy Counting, Space-Saving, CSS

ØProcess all flows, but only record a small part of them

ØExample: Space-Saving

!"�14 !#�10 !$�7 !%�515 !&�6f1 f5

Limitation of two existing solutions
ØCount-All

• Spend too much memory and time on mouse flows
• With total memory size small, the accuracy cannot be high

ØAdmit-All-Count-Some
• Could drastically over-estimate flow sizes (Space-Saving, CSS)
• Could make the size of elephant flows inaccurate (Frequent, Lossy

Counting)
• With limited memory size, many mouse flows can be mistreated as

elephant flows.

Our Contributions
ØA new data structure, named HeavyKeeper, which achieves high

accuracy and high processing speed in finding top-k elephant
flows.

ØExperiments on real network traffic and synthetic datasets,
showing the high performance of HeavyKeeper

ØDeploy algorithms in Open vSwitch (OVS) platform

Our Solution
ØHeavyKeeper

• Strategy: count-with-exponential-decay
• Keeps only elephant flows
• Drastically reduce space wasted on mouse flows

ØExponential-weakening-decay
• Mouse flows are easily be decayed and removed
• Elephant flows can hardly be removed
• Will not admit new flows unless one flow is ready to be removed

Data Structure

� �
!3

ℎ$(&�)

ℎ((&�)
ℎ)(&�)

* ������

�������������������� 	���������������

+ ������

!� � �!� �� !� �� !� �

!� �� �!� �� !� � !� �

!� � �!� � !� �� !� �

Insertion
ØMap: each incoming flow is mapped to one bucket for each array

by using the hash functions

Ø Insert: for each mapped bucket, different strategies are applied
according to different cases.

Insertion

C-1

!3

hi (!3)

Case 1: if C=0
then C=C+1

Case 2: if C>0 && FP=F3
then C=C+1

FP

Case 3.1: if C>0 && FP ≠ F3
with %&'(.= 1 − -./012/, C=C

Case 3.2: if C>0 && FP ≠ F3
with %&'(.= -./012/, C=C-1

CFP

C+1F3

C+1F3

CFP

Case 1
ØThe bucket is empty, i.e., C=0

• Simply set the fingerprint to FP(f3), and set C=C+1=1

0F3

"3

1

Case 2
ØThe bucket is not empty, i.e., C>0, and FP=F3

• Simply set C=C+1

CF3

"3

C+1

Case 3
ØThe bucket is not empty, i.e., C>0, but FP ≠ F3

• With a probability "#$%&'$, decrease the counter C by 1.
• If the counter is reduced to 0, we replace the original FP to the fingerprint

of the new flow F3

CFP

*3

C-10F3 1

Query
ØFor incoming flow f

ØMap: get d mapped buckets

ØFilter: get those buckets whose fingerprint is FP(f)

ØAnswer: report the largest value among all filtered buckets (0 if no
bucket left after filtering)

Decay Probability
Ø! = #$%

Ø # is a predefined constant, e.g., # = 1.08
Ø* is the value in the current counter field (the value to be decayed)

ØThe larger * is, the harder its flow size is decayed

Decay Probability
ØWhen the original bucket stores a mouse flow, it will be easily

decayed

!� �
!3

Decay with probability
1.08-3=0.794

2

Decay Probability
ØWhen the size of mouse flow is decayed to 0, the original flow will

be replaced
• Therefore, mouse flows can hardly stay in HeavyKeeper

!� �
!3

Decay with probability
1.08-1=0.926

0!3

Decay Probability
ØWhen the original bucket stores an elephant flow, it can be hardly

decayed
• Therefore, elephant flows can be stably stored in HeavyKeeper
• The estimated size of elephant flows will also be accurate

!� ���

!3
Decay with probability

1.08-100=4.55*10-4

Analysis
ØWith exponential-weakening decay, HeavyKeeper will tend to

store elephant flows and evict mouse flows.

ØMost mouse flows are simply passers-by of HeavyKeeper.

ØElephant flows are easily stored, and their estimated flow sizes
are also accurate.

Basic Algorithm
ØTo find top-k elephant flows, the basic

version of our algorithm will simply use a
min-heap to maintain the top-k elephant
flows, like sketches.

Min-Heap

HeavyKeeper

Analysis
ØComplexity

• Space: O(d*w).

• Experiments will show HeavyKeeper achieves high accuracy with very small memory

usage.

• Time: O(k).

• Updating the min-heap is time consuming. Even with the help of hash tables, the

insertion of the min-heap will also consume O(logk) time complexity.

Optimizations
ØUsing the min-heap, improving accuracy

• Too many details, skip

ØReplacing the min-heap with a single list, improving speed
• Ignoring fingerprint collisions, the flow size of each flow will grow 1 by 1.

• Define a threshold T (e.g., T=1000)

• Recording the incoming flow in the list if the estimated size of the flow is
equal to T

• Time complexity O(d)

HeavyKeeper !"#"# !"# = %? List
Y

Experimental Setup
ØDatasets

• Campus network traffic
• CAIDA
• Synthetic skewed datasets, Zipf

Ø Implementation
• " = 2, enough for HeavyKeeper
• Fixing k and changing memory size, estimate accuracy
• Fixing memory size and changing k, estimate accuracy
• Speed evaluation

Experimental Setup
ØMetrics

• Average absolute error (AAE). Absolute error is defined as |"# − %"#|.

• Average relative error (ARE). Relative error is defined as |&'(%&'|&'
.

• Precision. Among the k reported flows, how many flows are real top-k
elephant flows. 0%~100%.

Changing Memory Size

Changing K

Speed Evaluation

Open vSwitch Deployment
ØCreate a shared buffer between processes to store flow IDs.

ØModify OVS datapath to report each incoming flow ID to the
shared buffer.

ØA user-space program of HeavyKeeper to process those flow IDs
from the buffer.

Open vSwitch Buffer
Flow ID HeavyKeeperFlow ID

Evaluation

Thank you!

